Skip to main content

Stress Echocardiography in Pulmonary Hypertension

  • Chapter
  • First Online:
Stress Echocardiography

Abstract

Pulmonary hypertension can be precapillary or postcapillary. This distinction is only possible by invasive means, although echocardiography is the essential technique for identification, quantification, and monitoring. Pulmonary hypertension is defined by right heart catheterization criteria as a mean pulmonary arterial pressure > 20 mmHg. Precapillary pulmonary hypertension is characterized by a normal pulmonary capillary wedge pressure ≤ 15 mmHg and abnormal pulmonary vascular resistance (> 2 Wood units) reflecting a primary abnormality of pulmonary arterioles upstream to the alveolar-capillary barrier. Postcapillary pulmonary hypertension in heart failure is characterized by an abnormal pulmonary capillary wedge pressure (>15 mmHg) and normal pulmonary vascular resistance (≤ 2 Wood units). The presence of signs of pulmonary hypertension with a normal left heart, normal E/e′ ratio, and normal left atrial volume are suggestive of precapillary pulmonary hypertension. In addition, stress echocardiography can evaluate dynamically systolic pulmonary artery pressure with tricuspid regurgitant velocity jet or acceleration time of pulmonary flow. The right ventricular contractile reserve is also assessed with tricuspid annular plane systolic excursion to evaluate the right ventricular/pulmonary artery systolic pressure coupling. In the natural history of pulmonary hypertension, changes occur during exercise at an earlier stage compared to rest and therefore stress echocardiography shows a clear potential to identify these changes at a less severe and more reversible stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of PH. Eur Respir J. 2019;53:1801913.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Humbert M, Kovacs G, Hoeper MM, Badagliacca R, RMF B, Brida M, ESC/ERS Scientific Document Group, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of PH. Eur Heart J. 2022;43(38):3618–731.

    Google Scholar 

  3. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of PH. J Am Coll Cardiol. 2013;62:D34–41.

    PubMed  Google Scholar 

  4. Maron BA, Kovacs G, Vaidya A, Bhatt DL, Nishimura RA, Mak S, et al. Cardiopulmonary hemodynamics in PH and heart failure: JACC review topic of the week. J Am Coll Cardiol. 2020;76:2671–81.

    PubMed  PubMed Central  Google Scholar 

  5. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. Quiz 86–8

    Article  PubMed  Google Scholar 

  6. Sharma M, Burns AT, Yap K, Prior DL. The role of imaging in PH. Cardiovasc Diagn Ther. 2021;11:859–80.

    PubMed  PubMed Central  Google Scholar 

  7. McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104:2797–802. https://doi.org/10.1161/hc4801.100076.

    Article  CAS  PubMed  Google Scholar 

  8. Scalia GM, Scalia IG, Kierle R, Beaumont R, Cross DB, Feenstra J, et al. ePLAR—the echocardiographic pulmonary to left atrial ratio—a novel non-invasive parameter to differentiate pre-capillary and post-capillary PH. Int J Cardiol. 2016;212:379–86.

    PubMed  Google Scholar 

  9. Jenei C, Kádár R, Balogh L, Borbély A, Győry F, Péter A, et al. Role of 3D echocardiography-determined atrial volumes in distinguishing between pre-capillary and post-capillary PH. ESC Heart Fail. 2021;8:3975–83. https://doi.org/10.1002/ehf2.13496.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.

    PubMed  Google Scholar 

  11. Rudski LG, Gargani L, Armstrong WF, Lancellotti P, Lester SJ, Grünig E, et al. Stressing the cardiopulmonary vascular system: the role of echocardiography. J Am Soc Echocardiogr. 2018;31:527–550.e11.

    PubMed  Google Scholar 

  12. Ferrara F, Gargani L, Naeije R, Rudski L, Armstrong WF, Wierzbowska-Drabik K, RIGHT Heart International NETwork (RIGHT-NET), et al. Feasibility of semi-recumbent bicycle exercise Doppler echocardiography for the evaluation of the right heart and pulmonary circulation unit in different clinical conditions: the RIGHT heart international NETwork (RIGHT-NET). Int J Cardiovasc Imaging. 2021;37:2151–67.

    PubMed  Google Scholar 

  13. Bossone E, Rubefire M, Bach DS, Ricciardi M, Armstrong WF. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of PH. J Am Coll Cardiol. 1999;33:1662–6.

    CAS  PubMed  Google Scholar 

  14. Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, et al. Noninvasive evaluation of PH by a pulsed Doppler technique. Circulation. 1983;68:302–9.

    CAS  PubMed  Google Scholar 

  15. Bossone E, Avelar E, Bach DS, Gillespie B, Rubenfire M, Armstrong WF. Diagnostic value of resting tricuspid regurgitation velocity and right ventricular ejection flow parameters for the detection of exercise-induced PAH. Int J Card Imaging. 2000;16:429–36. https://doi.org/10.1023/a:1010604913656.

    Article  CAS  PubMed  Google Scholar 

  16. Yared K, Noseworthy P, Weyman AE, McCabe E, Picard MH, Baggish AL. Pulmonary artery acceleration time provides an accurate estimate of systolic pulmonary arterial pressure during TTE. J Am Soc Echocardiogr. 2011;24:687–92.

    PubMed  Google Scholar 

  17. Wang YC, Huang CH, Tu YK. PH and pulmonary artery acceleration time: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2018;31:201–210.e3.

    PubMed  Google Scholar 

  18. Wierzbowska-Drabik K, Picano E, Bossone E, Ciampi Q, Lipiec P, Kasprzak JD. The feasibility and clinical implication of TRV and pulmonary flow acceleration time evaluation for pulmonary pressure assessment during exercise SE. Eur Heart J Cardiovasc Imaging. 2019;20:1027–34.

    PubMed  Google Scholar 

  19. Wierzbowska-Drabik K, Kasprzak JD, Alto M, Ágoston G, Varga A, Ferrara F, et al. Reduced pulmonary vascular reserve during SE in confirmed PH and patients at risk of overt PH. Int J Cardiovasc Imaging. 2020;36:1831–43.

    PubMed  PubMed Central  Google Scholar 

  20. Picano E, Ciampi Q, Cortigiani L, Arruda-Olson AM, Borguezan-Daros C, de Castro E Silva Pretto JL, The SE Study Group Of The Italian Society Of Echocardiography And Cardiovascular Imaging Siecvi, et al. SE 2030: the novel ABCDE-(FGLPR) protocol to define the future of imaging. J Clin Med. 2021;10:3641. https://doi.org/10.3390/jcm10163641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lau EM, Humbert M, Celermajer DS. Early detection of PAH. Nat Rev Cardiol. 2015;12:143–55.

    PubMed  Google Scholar 

  22. Kleinnibbelink G, van Dijk APJ, Fornasiero A, Speretta GF, Johnson C, Sculthorpe N, et al. Acute exercise-induced changes in cardiac function relates to right ventricular remodeling following 12-weeks hypoxic exercise training. J Appl Physiol. 2021;131:511–9.

    PubMed  Google Scholar 

  23. Coates AM, King TJ, Currie KD, Tremblay JC, Petrick HL, Slysz JT, et al. Alterations in cardiac function following endurance exercise are not duration dependent. Front Physiol. 2020;11:581797.

    PubMed  PubMed Central  Google Scholar 

  24. Grünig E, Janssen B, Mereles D, Barth U, Borst MM, Vogt IR, et al. Abnormal pulmonary artery pressure response in asymptomatic carriers of primary PH gene. Circulation. 2000;102:1145–50.

    PubMed  Google Scholar 

  25. Montani D, Girerd B, Jaïs X, Laveneziana P, Lau EMT, Bouchachi A, et al. Screening for PAH in adults carrying a BMPR2 mutation. Eur Respir J. 2021;58:2004229.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gargani L, Pignone A, Agoston G, Moreo A, Capati E, Badano LP, et al. Clinical and echocardiographic correlations of exercise-induced PH in systemic sclerosis: a multicenter study. Am Heart J. 2013;165:200–7.

    PubMed  Google Scholar 

  27. Baptista R, Serra S, Martins R, Teixeira R, Castro G, Salvador MJ, et al. Exercise echocardiography for the assessment of PH in systemic sclerosis: a systematic review. Arthritis Res Ther. 2016;18:153.

    PubMed  PubMed Central  Google Scholar 

  28. Gargani L, Bruni C, Romei C, Frumento P, Moreo A, Agoston G, et al. Prognostic value of lung ultrasound B-lines in systemic sclerosis. Chest. 2020;158:1515–25.

    CAS  PubMed  Google Scholar 

  29. Mukherjee M, Mercurio V, Hsu S, Mayer SA, Mathai SC, Hummers LK, et al. Assessment of right ventricular reserve utilizing exercise provocation in systemic sclerosis. Int J Cardiovasc Imaging. 2021;37:2137–47.

    PubMed  PubMed Central  Google Scholar 

  30. Grünig E, Mereles D, Hildebrandt W, Swenson ER, Kübler W, Kuecherer H, et al. Stress Doppler echocardiography for identification of susceptibility to high-altitude pulmonary edema. J Am Coll Cardiol. 2000;35:980–7.

    PubMed  Google Scholar 

  31. Mounier R, Amonchot A, Caillot N, Gladine C, Citron B, Bedu M, et al. Pulmonary arterial systolic pressure and susceptibility to high-altitude pulmonary edema. Respir Physiol Neurobiol. 2011;179:294–9.

    PubMed  Google Scholar 

  32. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the heart failure association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22:391–412.

    PubMed  Google Scholar 

  33. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J Thorac Cardiovasc Surg. 2021;162:e183–353.

    PubMed  Google Scholar 

  34. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, ESC/EACTS Scientific Document Group, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2022;43:561–632. https://doi.org/10.1093/eurheartj/ehab395. Erratum in: Eur Heart J. 2022; 43:2022.

    Article  PubMed  Google Scholar 

  35. Magne J, Pibarot P, Sengupta PP, Donal E, Rosenhek R, Lancellotti P. PH in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC group. JACC Cardiovasc Imaging. 2015;8:83–99.

    PubMed  Google Scholar 

  36. O’Gara PT, Grayburn PA, Badhwar V, Afonso LC, Carroll JD, Elmariah S, et al. 2017 ACC expert consensus decision pathway on the management of mitral regurgitation: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol. 2017;70:2421–49.

    PubMed  Google Scholar 

  37. NICE National Institute for Health Care and Excellence. Heart valve disease presenting in adults. investigation and management. Evidence review for stress testing and SE for determining the need for intervention. https://www.nice.org.uk/guidance/ng208/evidence/e-stress-testing-and-stress-echocardiography-in-determining-need-for-intervention-pdf-10887602658. 2021

  38. Hsu S, Houston BA, Tampakakis E, Bacher AC, Rhodes PS, Mathai SC, et al. Right ventricular functional reserve in PAH. Circulation. 2016;133:2413–22.

    PubMed  PubMed Central  Google Scholar 

  39. Sharma T, Lau EM, Choudhary P, Torzillo PJ, Munoz PA, Simmons LR, et al. Dobutamine stress for evaluation of right ventricular reserve in PAH. Eur Respir J. 2015;45:700–8.

    CAS  PubMed  Google Scholar 

  40. Grignola JC, Domingo E. The emerging role of the contractile and vascular reserves in PAH. Eur Respir J. 2015;45:1756–8.

    PubMed  Google Scholar 

  41. Lewis GD, Bossone E, Naeije R, Grunig E, Saggar R, Lancellotti P, et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation. 2013;128:1470–9.

    PubMed  Google Scholar 

  42. Naeije R, Vanderpool R, Dhakal BP, Saggar RR, Saggar RR, Vachiery J-LL, et al. Exercise-induced PH: physiological basis and methodological concerns. Am J Respir Crit Care Med. 2013;187:576–83.

    PubMed  PubMed Central  Google Scholar 

  43. Naeije R, Saggar R, Badesch D, Rajagopalan S, Gargani L, Rischard F, et al. Exercise-induced PH: translating pathophysiological concepts into clinical practice. Chest. 2018;154(1):10–5. Eur Respir J. 2017;50:1700578.

    PubMed  Google Scholar 

  44. Kovacs G, Herve P, Barbera JA, Chaouat A, Chemla D, Condliffe R, et al. An official European Respiratory Society statement: pulmonary hemodynamics during exercise. Eur Respir J. 2017;50:1700578.

    PubMed  Google Scholar 

  45. Kyranis SJ, Latona J, Platts D, Kelly N, Savage M, Brown M, et al. Improving the echocardiographic assessment of pulmonary pressure using the tricuspid regurgitant signal-the “chin” vs the “beard”. Echocardiography. 2018;35:1085–96.

    PubMed  Google Scholar 

  46. Argiento P, Vanderpool RR, Mulè M, Russo MG, D'Alto M, Bossone E, et al. Exercise SE of the pulmonary circulation: limits of normal and sex differences. Chest. 2012;142:1158–65.

    PubMed  PubMed Central  Google Scholar 

  47. Argiento P, Chesler N, Mulè M, D'Alto M, Bossone E, Unger P, et al. Exercise SE for the study of the pulmonary circulation. Eur Respir J. 2010;35:1273–8.

    CAS  PubMed  Google Scholar 

  48. Gold FL, Bache RJ. Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Evidence for subendocardial ischemia despite residual vasodilator reserve. Circ Res. 1982;51:196–204.

    CAS  PubMed  Google Scholar 

  49. Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63:87–95.

    CAS  PubMed  Google Scholar 

  50. Takeuchi M, Ogawa K, Wake R, Takise H, Miyazaki C, Otani S, et al. Measurement of coronary flow velocity reserve in the posterior descending coronary artery by contrast-enhanced transthoracic Doppler echocardiography. J Am Soc Echocardiogr. 2004;17:21–7.

    PubMed  Google Scholar 

  51. Cortigiani L, Rigo F, Bovenzi F, Sicari R, Picano E. The prognostic value of coronary flow velocity reserve in two coronary arteries during vasodilator SE. J Am Soc Echocardiogr. 2019;32:81–91.

    PubMed  Google Scholar 

  52. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, et al. The clinical use of SE in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30:101–38.

    PubMed  Google Scholar 

  53. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42:3599–726.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bossone, E., Ferrara, F., Picano, E. (2023). Stress Echocardiography in Pulmonary Hypertension. In: Picano, E. (eds) Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-031-31062-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31062-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31061-4

  • Online ISBN: 978-3-031-31062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics