Skip to main content

Step C for Cardiac Reserve in Stress Echocardiography

  • Chapter
  • First Online:
Stress Echocardiography

Abstract

Quantitative measurements of end-diastolic volume and end-systolic volume are not routinely employed in many laboratories since they are time-consuming and not so reproducible for image degradation during stress. Ejection fraction is usually accurately estimated by eyeballing, but the measurement of left ventricular volumes requires a quantitative assessment with endocardial border delineation of left ventricular planimetry by hand. The method of disks requires biplane apical views, which are feasible and of good quality in most but not all patients. Simpler methods are less accurate for absolute measurements, but equally accurate for the evaluation of relative changes from rest to peak stress. When the Simpson method is not feasible, apical single plane or even, in non-distorted ventricles, the simplest linear method can be employed. As technology evolves allowing high frame rates during stress, volumetric stress echo will become routine with real-time three-dimensional echocardiography, independent of geometric assumptions. Artificial intelligence allows operator-independent, click-free, assessment of left ventricular volume from 2D images. End-diastolic volume and end-systolic volume explore the mechanisms of reduced preload and reduced contractile reserve. Ejection fraction should not be considered a measure of contractility, and meaningful use of ejection fraction as a diagnostic parameter requires simultaneous estimation of left ventricular volumes. A normal cardiac reserve implies a normal chronotropic reserve, preload reserve (with end-diastolic volume higher during stress than at rest), and a normal contractile reserve (with end-systolic volume lower during stress compared to rest). A reduced cardiac reserve and inducible regional wall motion abnormalities have independent and incremental value in predicting outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Opie LH. Mechanisms of cardiac contraction and relaxation. In: Braunwald E, Zipes DP, Libby P, Bonow RO, editors. Heart disease, vol. 457–489. 7th ed. Philadelphia: WB Saunders; 2005. p. 480.

    Google Scholar 

  2. Bombardini T. Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis. Cardiovasc Ultrasound. 2005;3:27.

    PubMed  PubMed Central  Google Scholar 

  3. O’Rourke B, Kass DA, Tomaselli GF, et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure I. Circ Res. 1999;84:562–70.

    PubMed  Google Scholar 

  4. Konstam MA, Abboud F. EF: misunderstood and overrated. Circulation. 2017;135:717–9.

    PubMed  PubMed Central  Google Scholar 

  5. Alpert NR, Mulieri LA, Warshaw D. The failing human heart. Cardiovasc Res. 2002;54:1–10.

    CAS  PubMed  Google Scholar 

  6. Ross J Jr, Sonnenblick EH, Taylor RR, Spotnitz HM, Covell JW. Diastolic geometry and sarcomere lengths in the chronically dilated canine left ventricle. Circ Res. 1971;28:49–61.

    PubMed  Google Scholar 

  7. Ginzton LE, Laks MM, Brizendine M, Conant R, Mena I. Noninvasive measurement of the rest and exercise peak systolic pressure/ESV ratio: a sensitive two-dimensional echocardiographic indicator of LV function. J Am Coll Cardiol. 1984;4:509–16.

    CAS  PubMed  Google Scholar 

  8. Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E. Force-frequency relationship in the echocardiography laboratory: a noninvasive assessment of Bowditch treppe? J Am Soc Echocardiogr. 2003;16:646–55.

    PubMed  Google Scholar 

  9. Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, et al. 2016–2018 EACVI scientific documents committee; 2016–2018 EACVI scientific documents committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18:1301–10.

    PubMed  Google Scholar 

  10. Marwick T, Negishi K. Global LV systolic function: EF versus strain. In: Lang RM, Goldstein SA, Kronzon I, Khanderia BK, Mor-Avi V, editors. American Society of Echocardiography’s comprehensive echocardiography. Philadelphia: Elsevier; 2022. Chapter 24. p. 146–9.

    Google Scholar 

  11. Wehner GJ, Jing L, Haggerty CM, Suever JD, Leader JB, Hartzel DN, et al. Routinely reported EF and mortality in clinical practice: where does the nadir of risk lie? Eur Heart J. 2020;41:1249–57.

    PubMed  Google Scholar 

  12. Stewart S, Playford D, Scalia GM, Currie P, Celermajer DS, Prior D, et al. NEDA investigators. EF and mortality: a nationwide register-based cohort study of 499 153 women and men. Eur J Heart Fail. 2021;23:406–16.

    CAS  PubMed  Google Scholar 

  13. Lancellotti P, Pellikka PA, Budts W, Chaudry FA, Donal E, Dulgheru R, et al. Recommendations for the clinical use of SE in non-ischemic heart disease: joint document of the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2016;17:1191–229.

    PubMed  Google Scholar 

  14. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.

    PubMed  Google Scholar 

  15. Torres MAR, Texeira TF, Camarozano AC, Bellagamba CCA, Quevedo NM, Heidemann Junior AI, et al. The value of a simplified approach to ESV measurement for assessment of LV contractile reserve during stress-echocardiography. Int J Cardiovasc Imaging. 2019;35:1019–26.

    PubMed  Google Scholar 

  16. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, et al. Clinical practice of contrast echocardiography: recommendations from the European Association of Cardiovascular Imaging 2017. Eur Heart J Cardiovasc Imaging. 2017;18:1205.

    PubMed  Google Scholar 

  17. Varnero S, Santagata P, Pratali L, Basso M, Gandolfo A, Bellotti P. Head to head comparison of 2D vs real-time 3D dipyridamole SE. Cardiovasc Ultrasound. 2008;6:31.

    PubMed  PubMed Central  Google Scholar 

  18. Badano LP, Muraru D, Rigo F, Del Mestre L, Ermacora D, Gianfagna P, et al. High volume-rate three-dimensional SE to assess inducible myocardial ischemia: a feasibility study. J Am Soc Echocardiogr. 2010;23:628–35.

    PubMed  Google Scholar 

  19. Barletta G, Del Bene MR. Effects of dipyridamole on cardiac and systemic hemodynamics: real-time three-dimensional stress echo beyond regional wall motion. J Cardiovasc Med. 2011;12:455–9.

    Google Scholar 

  20. Pratali L, Molinaro S, Corciu AI, Pasanisi EM, Scalese M, Sicari R. Feasibility of real-time three-dimensional SE: pharmacological and semi-supine exercise. Cardiovasc Ultrasound. 2010;8:10.

    PubMed  PubMed Central  Google Scholar 

  21. Johri AM, Chitty DW, Hua L, Marincheva G, Picard MH. Assessment of image quality in real-time three-dimensional dobutamine SE: an integrated 2D/3D approach. Echocardiography. 2015;32:496–507.

    PubMed  Google Scholar 

  22. Berbarie RF, Dib E, Ahmad M. SE using real-time three-dimensional imaging. Echocardiography. 2018;35:1196–203.

    PubMed  Google Scholar 

  23. Østvik A, Smistad E, Aase SA, Haugen BO, Lovstakken L. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med Biol. 2019;45:374–84.

    PubMed  Google Scholar 

  24. Bombardini T, Zagatina A, Ciampi Q, Cortigiani L, D'andrea A, Borguezan Daros C, et al. Stress Echo 2020 study group of the Italian Society of Echocardiography and Cardiovascular Imaging. Feasibility and value of two-dimensional volumetric SE. Minerva Cardio Angiol. 2022;70:148–59.

    Google Scholar 

  25. Bombardini T, Nevola E, Giorgetti A, Landi P, Picano E, Neglia D. Prognostic value of left-ventricular and peripheral vascular performance in patients with dilated cardiomyopathy. J Nucl Cardiol. 2008;15:353–62.

    PubMed  Google Scholar 

  26. Olson CE, Porter TR, Deligonul U, Xie F, Anderson JR. LV volume changes during dobutamine SE identify patients with more extensive coronary artery disease. J Am Coll Cardiol. 1994;24:1268–73.

    CAS  PubMed  Google Scholar 

  27. Coletta C, Galati A, Ricci R, Sestilli A, Guagnozzi G, Re F, et al. Prognostic value of LV volume response during dobutamine SE. Eur Heart J. 1997;18:1599–605.

    CAS  PubMed  Google Scholar 

  28. de Isla LP, Zamorano J, Almeria C, Rodrigo JL, Villagomez D, Florit J, et al. Long-term prognostic importance of transient LV dilation during pharmacologic SE. J Am Soc Echocardiogr. 2005;18:57–62.

    Google Scholar 

  29. Yao SS, Shah A, Bangalore S, Chaudhry FA. Transient ischemic LV cavity dilation is a significant predictor of severe and extensive coronary artery disease and adverse outcomes in patients undergoing SE. J Am Soc Echocardiogr. 2007;20:352–8.

    PubMed  Google Scholar 

  30. Turakhia MP, McManus DD, Whooley MA, Schiller NB, et al. Eur Heart J. 2009;30:2478–84.

    PubMed  PubMed Central  Google Scholar 

  31. Kataoka A, Scherrer-Crosbie M, Senior R, Garceau P, Valbuena S, Celutkiene J, et al. Transient ischemic dilatation during SE: an additional marker of significant myocardial ischemia. Echocardiography. 2016;33:1202–8.

    PubMed  Google Scholar 

  32. Alama M, Labos C, Emery H, Iwanochko R, Freeman M, Husain M, et al. Diagnostic and prognostic significance of transient ischemic dilation in myocardial perfusion imaging: a systematic review and meta-analysis. J Nucl Cardiol. 2018;25:724–37.

    PubMed  Google Scholar 

  33. Marwick TH. Abnormal contractile reserve to exercise: a stress echocardiographic abnormality that may be associated with myocardial rather than coronary artery disease. J Am Soc Echocardiogr. 2015;28:106–7.

    PubMed  Google Scholar 

  34. Bombardini T, Gherardi S, Arpesella G, Maccherini M, Serra W, Magnani G, et al. Favorable short-term outcome of transplanted hearts selected from marginal donors by pharmacological SE. J Am Soc Echocardiogr. 2011;24:353–62.

    PubMed  Google Scholar 

  35. Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E. End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of LV contractility. Eur Heart J. 2005;26:2404–12.

    PubMed  Google Scholar 

  36. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E. End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative SE. Biomed Res Int. 2013;2013:235194.

    PubMed  PubMed Central  Google Scholar 

  37. Cortigiani L, Huqi A, Ciampi Q, Bombardini T, Bovenzi F, Picano E. Integration of wall motion, coronary flow velocity, and LV contractile reserve in a single test: prognostic value of vasodilator SE in patients with diabetes. J Am Soc Echocardiogr. 2018;31:692–701.

    PubMed  Google Scholar 

  38. Dini FL, Mele D, Conti U, Ballo P, Citro R, Menichetti F, et al. Peak power output to LV mass: an index to predict ventricular pumping performance and morbidity in advanced heart failure. J Am Soc Echocardiogr. 2010;3:1259–65.

    Google Scholar 

  39. Cortigiani L, Sorbo S, Miccoli M, Scali MC, Simioniuc A, Morrone D, et al. Prognostic value of cardiac power output to LV mass in patients with LV dysfunction and dobutamine stress echo negative by wall motion criteria. Eur Heart J Cardiovasc Imaging. 2017;18:153–8.

    PubMed  Google Scholar 

  40. Ciampi Q, Zagatina A, Cortigiani L, Gaibazzi N, Borguezan Daros C, Zhuravskaya N, et al. Stress Echo 2020 Study Group of the Italian Society of Echocardiography and Cardiovascular Imaging. Functional, anatomical, and prognostic correlates of coronary flow velocity reserve during SE. J Am Coll Cardiol. 2019;74:2278–91.

    CAS  PubMed  Google Scholar 

  41. Picano E, Bombardini T, Kovačević Preradović T, Cortigiani L, Wierzbowska-Drabik K, et al. LV contractile reserve in SE: the bright side of the force. Kardiol Pol. 2019;77:164–72.

    PubMed  Google Scholar 

  42. Bombardini T, Zagatina A, Ciampi Q, Arbucci R, Merlo PM, Lowenstein Haber DM, et al. Hemodynamic heterogeneity of reduced cardiac reserve unmasked by volumetric exercise echocardiography. J Clin Med. 2021;10:2906–13.

    PubMed  PubMed Central  Google Scholar 

  43. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, et al. Guidelines for performance, interpretation, and application of SE in ischemic heart disease: from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33:1–41.

    PubMed  Google Scholar 

  44. Picano E, Pierard L, Peteiro J, Djordjevic-Dikic A, Sade LE, Cortigiani L, et al. The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: a clinical consensus statement from the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur heart J Cardiovasc. Imaging. 2023.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Dr. Maasaki Tacheuchi to the previous editions of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 8688 kb)

(MP4 3653 kb)

(MP4 3715 kb)

(MP4 3681 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bombardini, T., Picano, E. (2023). Step C for Cardiac Reserve in Stress Echocardiography. In: Picano, E. (eds) Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-031-31062-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31062-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31061-4

  • Online ISBN: 978-3-031-31062-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics