Skip to main content

Elastography: Technical Aspects

  • Chapter
  • First Online:
Elastography of the Musculoskeletal System

Abstract

Elastography is an imaging method which has recently been developed and which allows, thanks to the intrinsic characteristics of the tissues studied, to evaluate the elasticity/stiffness characteristics of the tissues and organs in the context of an ultrasound study.

It is essential to understand the physical principles, the innumerable varieties of elastography, and the technical artefacts to allow its application in advanced diagnostic imaging fields such as musculoskeletal ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavarello R, Oelze ML. Theory of ultrasound physics and imaging. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  2. Nenadic I, Urban M, Greenleaf J, Gennisson J-L, Bernal M, Tanter M. Editors’ introduction. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  3. Ormachea J, Parker KJ. Elastography imaging: the 30-year perspective. Phys Med Biol. 2020;65(24) https://doi.org/10.1088/1361-6560/abca00.

  4. Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging. 2018;9(5):791–814. https://doi.org/10.1007/s13244-018-0642-1. Epub 2018 Aug 17.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gunnison J-L. Transverse wave propagation in anisotropic media. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  6. Vasconcelos L, Gennisson J-L, Nenadic I. Continuum mechanics tensor calculus and solutions to wave equations. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  7. https://en.wikipedia.org/wiki/Constitutive_equation.

  8. https://en.wikipedia.org/wiki/Poisson%27s_ratio.

  9. Wang M. Ultrasound tomography. In: Industrial tomography systems and applications, Woodhead publishing series in electronic and optical materials. Cambridge: Woodhead Publishing; 2015. p. 235–61.

    Google Scholar 

  10. Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM, Gao L, Witte RS. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855–70. https://doi.org/10.1148/rg.2017160116.

    Article  PubMed  Google Scholar 

  11. Budday S, Ovaert TC, Holzapfel GA, et al. Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue. Arch Computat Methods Eng. 2020;27:1187–230. https://doi.org/10.1007/s11831-019-09352-w.

    Article  Google Scholar 

  12. Wang Y, Insana MF. Wave propagation in viscoelastic materials. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  13. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29. https://doi.org/10.7150/thno.18650.

    Article  PubMed  PubMed Central  Google Scholar 

  14. https://en.wikipedia.org/wiki/Continuum_mechanics.

  15. Chen W. The renaissance of continuum mechanics. J Zheijang Univ-Sci. 2014;15:231–40. https://doi.org/10.1631/jzus.A1400079.

    Article  Google Scholar 

  16. Liu I-S, Sampaio R. On objectivity and the principle of material frame-indifference. Mecánica Computacional. XXXI:1553–69.

    Google Scholar 

  17. Li GY, Cao Y. Mechanics of ultrasound elastography. Proc Math Phys Eng Sci. 2017 Mar;473(2199):20160841 https://doi.org/10.1098/rspa.2016.0841. Epub 2017 Mar 1.

  18. Lerner RM, Parker KJ, Holen J, Gramiak R, Waag RC. Sonoelasticity: Medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Acoust Imaging 1988;16:317–27.

    Google Scholar 

  19. Parker KJ, Fu D, Graceswki SM, Yeung F, Levinson SF. Vibration sonoelastography and the detectability of lesions. Ultrasound Med Biol. 1998;24(9):1437–47. https://doi.org/10.1016/s0301-5629(98)00123-9.

    Article  CAS  PubMed  Google Scholar 

  20. Dawood M, Ibrahim N, Elsaeed H, Hegazy N. Diagnostic performance of sonoelastographic Tsukuba score and strain ratio in evaluation of breast masses. The Egyptian Journal of Radiology and Nuclear Medicine. 2018;49(01):265–71.

    Article  Google Scholar 

  21. Wadugodapitiya S, Sakamoto M, Sugita K, Morise Y, Tanaka M, Kobayashi K. Ultrasound elastographic assessment of the stiffness of the anteromedial knee joint capsule at varying knee angles. Biomed Mater Eng. 2019;30(2):219–30. https://doi.org/10.3233/BME-191046.

    Article  PubMed  Google Scholar 

  22. Patra S, Grover SB. Physical principles of elastography: a primer for radiologists. Indographics. 2022;1:27–40. 10.1055/s-0042-1742575

    Google Scholar 

  23. Dewall RJ. Ultrasound elastography: principles, techniques, and clinical applications. Crit Rev Biomed Eng. 2013;41(1):1–19. https://doi.org/10.1615/critrevbiomedeng.2013006991.

    Article  PubMed  Google Scholar 

  24. Czernuszewicz TJ, Gallippi CM. Acoustic radiation force impulse ultrasound. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  25. Gennisson J-L, Tanter M. Supersonic shear imaging. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  26. Sandrin L, Sasso M, Audière S, Bastard C, Fournier C, Oudry J, Miette V, Catheline S. Transient elastography: from research to noninvasive assessment of liver fibrosis using Fibroscan®. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  27. User manual of Fibroscan® 630 Europe.

    Google Scholar 

  28. McAleavey SA. Single tracking location shear wave elastography. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  29. Lu J, Chen M, Chen Q-H, Wu Q, Jiang J-N, Leung T-Y. Elastogram: physics, clinical applications, and risks. Maternal-Fetal Med. 2019;1(2):113–22. https://doi.org/10.1097/FM9.0000000000000024.

    Article  Google Scholar 

  30. Alizad A, Fatemi M. Vibro-acoustography and its medical applications. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  31. Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging. 2013;94(5):487–95. https://doi.org/10.1016/j.diii.2013.01.022. Epub 2013 Apr 22.

    Article  PubMed  Google Scholar 

  32. Konofagou E. Harmonic motion imaging. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  33. Vappou J, Maleke C, Konofagou EE. Quantitative viscoelastic parameters measured by harmonic motion imaging. Phys Med Biol. 2009;54(11):3579–94.

    Article  PubMed  Google Scholar 

  34. Konofagou EE, Maleke C, Vappou J. Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring. Curr Med Imaging Rev. 2012;8(1):16–26.

    Article  PubMed  PubMed Central  Google Scholar 

  35. McAleavey S, Collins E, Kelly J, et al. Validation of SMURF estimation of shear modulus in hydrogels. Ultrason Imaging. 2009;31:131–50.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Song P, Chen S. Comb-push ultrasound shear elastography. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  37. Song P, Manduca A, Zhao H, et al. Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering. Ultrasound Med Biol. 2014;40:1343–55.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song, P. (2014). Innovations in ultrasound shear wave elastography. PhD Thesis. Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, USA.

    Google Scholar 

  39. Mahdavi SS, Moradi M, Wen X, Morris WJ, Salcudean SE. Vibro-elastography for visualization of the prostate region: method evaluation. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):339–47. https://doi.org/10.1007/978-3-642-04271-3_42.

    Article  PubMed  Google Scholar 

  40. Zhang X, Zhou B, VanBuren WM, Burnett TL, Knudsen JM. Transvaginal ultrasound vibro-elastography for measuring uterine viscoelasticity: a phantom study. Ultrasound Med Biol. 2019;45(2):617–22. https://doi.org/10.1016/j.ultrasmedbio.2018.10.009. Epub 2018 Nov 19.

    Article  PubMed  Google Scholar 

  41. Wu Z, Taylor LS, Rubens DJ, Parker KJ. Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials. Phys Med Biol. 2004;49:911–22.

    Article  PubMed  Google Scholar 

  42. Hoyt K, Castaneda B, Parker KJ. Two-dimensional sonoelastographic shear velocity imaging. Ultrasound Med Biol. 2008;34:276–88.

    Article  PubMed  Google Scholar 

  43. Parker KJ. Dynamic elasticity imaging. In: Ultrasound elastography for biomedical applications and medicine. Hoboken: Wiley; 2019. ISBN 9781119021551.

    Google Scholar 

  44. Tzschatzsch H, Ipek-Ugay S, Trong MN, Guo J, Eggers J, Gentz E, Fischer T, Schultz M, Braun J, Sack I. Multifrequency time-harmonic elastography for the measurement of liver viscoelasticity in large tissue windows. Ultrasound Med Biol. 2015;41:724–33.

    Article  PubMed  Google Scholar 

  45. Tzschatzsch H, Nguyen Trong M, Scheuermann T, Ipek-Ugay S, Fischer T, Schultz M, Braun J, Sack I. Two-dimensional time-harmonic elastography of the human liver and spleen. Ultrasound Med Biol. 2016;42:2562–7.

    Article  PubMed  Google Scholar 

  46. Parker KJ, Ormachea J, Zvietcovich F, Castaneda B. Reverberant shear wave fields and estimation of tissue properties. Phys Med Biol. 2017;62:1046–61.

    Article  CAS  PubMed  Google Scholar 

  47. Ormachea J, Parker KJ, Barr RG. An initial study of complete 2D shear wave dispersion images using a reverberant shear wave field. Phys Med Biol. 2019;64:145009.

    Google Scholar 

  48. Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall Med. 2017;38:e16–47.

    Google Scholar 

  49. Ormachea J, Zvietcovich F. Reverberant shear wave elastography: a multi-modal and multi-scale approach to measure the viscoelasticity properties of soft tissues. Front Phys. 2020; https://doi.org/10.3389/fphy.2020.606793.

  50. Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography, part 1: basic principles and technology. Ultraschall Med. 2013;34:169–84.

    Article  CAS  PubMed  Google Scholar 

  51. Kot BCW, Zhang ZJ, Lee AWC, et al. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One. 2012;7:e44348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bouchet P, Gennisson JL, Podda A, Alilet M, Carrié M, Aubry S. Artifacts and technical restrictions in 2D shear wave elastography. Ultraschall Med. 2020;41(3):267–77. https://doi.org/10.1055/a-0805-1099.

    Article  PubMed  Google Scholar 

  53. Aubry S, Nueffer JP, Carrié M. Evaluation of the effect of an anisotropic medium on shear wave velocities of intra-muscular gelatinous inclusions. Ultrasound Med Biol. 2017;43(1):301–8. https://doi.org/10.1016/j.ultrasmedbio.2016.09.006. Epub 2016 Oct 12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Solano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marsico, S., Maiques, J.M., Solano, A. (2023). Elastography: Technical Aspects. In: Marsico, S., Solano, A. (eds) Elastography of the Musculoskeletal System . Springer, Cham. https://doi.org/10.1007/978-3-031-31054-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31054-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31053-9

  • Online ISBN: 978-3-031-31054-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics