Skip to main content

Characterization of the Bones of Different Bovine Breeds Based on the Microarchitecture of the Bone Tissue

  • Conference paper
  • First Online:
Proceedings of the 8th Brazilian Technology Symposium (BTSym’22) (BTSym 2022)

Abstract

This work deals with the characterization of bone based on the microarchitecture of this tissue, aiming to provide data for the manufacture of xenogenic or biomimetic biomaterials. To carry out the studies animals of the Canchim and Nellore bovine breeds of precise and controlled origin were selected, all having the same biological and biomechanical processes from birth to slaughter that occurred before adulthood. Metatarsal bone samples were prepared and characterized by scanning electron microscopy and optical and energy dispersive spectroscopy. Subsequently, their microhardness, elastic modulus, and resistance to plastic deformation by nanoindentation were analyzed. Finally, the crystal structure of dry bone metatarsals was characterized by X-ray diffraction, obtaining grid, crystal size, and micro-formation by the Rietveld refinement method. The results showed that the bones of the two races showed differences not only visually, in the microscope images, but also statistically in the modulus of elasticity, crystallite size, and Knoop microhardness. However, they presented statistical similarities in hardnesses, calcium and phosphorus ratio, and microstructure (micro deformation and parameters of the network). From the results presented, it can be concluded that despite the breeds having the same breeding protocol, the bones presented some differences in their characterization, and, consequently, the manufacture of biomaterials from these bones must follow different protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kattimani, V.S., Kondaka, S., Lingamaneni, K.P.: Hydroxyapatite–-Past, present, and future in bone regeneration. Bone Tissue Regen. Insights. 7, BTRI-S36138 (2016)

    Google Scholar 

  2. Rahman, S.U.: Hydroxyapatite and tissue engineering. In: Handbook of Ionic Substituted Hydroxyapatites, pp. 383–400. Elsevier (2020)

    Google Scholar 

  3. Thiagarajan, Y., de Oliveira, G.G., Iano, Y., Vaz, G.C.: Identification and analysis of bacterial species present in cow dung fed microbial fuel cell. In: Brazilian Technology Symposium, pp. 16–24. Springer (2023). https://doi.org/10.1007/978-3-031-04435-9_2

  4. Roseti, L., et al.: Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng. C. 78, 1246–1262 (2017)

    Google Scholar 

  5. Erbereli, R., de Camargo, I.L., Morais, M.M., Fortulan, C.A.: 3D printing of trabecular bone-mimetic structures by vat photopolymerization of bovine hydroxyapatite as a potential candidate for scaffolds. J. Braz. Soc. Mech. Sci. Eng. 44(5), 1–9 (2022). https://doi.org/10.1007/s40430-022-03468-0

  6. Pramanik, S., Ataollahi, F., Pingguan-Murphy, B., Oshkour, A.A., Osman, N.A.A.: In vitro study of surface modified poly(ethylene glycol)-impregnated sintered bovine bone scaffolds on human fibroblast cells. Sci. Rep. 5, 9806 (2015)

    Google Scholar 

  7. Pramanik, S., Pingguan, B., Cho, J., Osman, N.A.A.: Design and development of potential tissue engineering scaffolds from structurally different longitudinal parts of a bovine-femur. Sci. Rep. 4, 1–10 (2014)

    Google Scholar 

  8. Braga, F.J.C.: Materiais aplicados à medicina e odontologia-físico-química e resposta biológica (2015)

    Google Scholar 

  9. Farokhi, M., Mottaghitalab, F., Shokrgozar, M.A., Ou, K.-L., Mao, C., Hosseinkhani, H.: Importance of dual delivery systems for bone tissue engineering. J. Control. Release. 225, 152–169 (2016)

    Google Scholar 

  10. Burr, D.B.: Bone morphology and organization. In: Basic and applied bone biology. pp. 3–26. Elsevier (2019)

    Google Scholar 

  11. Paiva, K.B.S., Granjeiro, J.M.: Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch. Biochem. Biophys. 561, 74–87 (2014)

    Google Scholar 

  12. Abdalla, R., Omar, A., Eid, K.: Detecting demineralization of enamel and cementum after gamma irradiation using radiographic densitometry. Radiat. Environ. Biophys. 57(3), 293–299 (2018). https://doi.org/10.1007/s00411-018-0749-2

  13. Shanmuganantha, L., Baharudin, A., Sulong, A.B., Shamsudin, R., Ng, M.H.: Prospect of metal ceramic (Titanium-Wollastonite) composite as permanent bone implants: a narrative review. Materials (Basel). 14, 277 (2021)

    Google Scholar 

  14. Pérez-Sáez, M.J., Prieto-Alhambra, D., Díez-Pérez, A., Pascual, J.: Advances in the evaluation of bone health in kidney transplant patients. Nefrol. (English Ed.) 38, 27–33 (2018)

    Google Scholar 

  15. Baldini, M., et al.: Bone quality in beta-thalassemia intermedia: relationships with bone quantity and endocrine and hematologic variables. Ann. Hematol. 96(6), 995–1003 (2017). https://doi.org/10.1007/s00277-017-2959-0

  16. Rossini, M., et al.: Guidelines for the diagnosis, prevention and management of osteoporosis. Reumatismo 68, 1–39 (2016)

    Google Scholar 

  17. Brasil, instrução normativa no 3, de 17 de janeiro de 2000 o secretario de defesa agropecuária do ministério da agricultura, pecuária e abastecimento, no uso da atribuição que lhe confere o art. 83, inciso IV, do Regimento Interno da Secretaria, aprovado pela Por, pp. 3–10 (2000). http://www.agricultura.gov.br/assuntos/sustentabilidade/bem-estar-animal/arquivos/arquivos-legislacao/in-03-de-2000.pdf

  18. Brasil, Instrução normativa N°56 de 6 de Novembro de 2008, Diário Of. Da União, Brasília, DF, 6 Nov. 2008, pp.  6–7 (2008)

    Google Scholar 

  19. Brasil, Instrução Normativa no 46, de 6 de outubro de 2011. Regulamento Técnico para os Sistemas Orgânicos de Produção Animal e Vegetal., Diário Of. Da União, Brasília, DF, 7 out. 2011. Seção 1, pp. 4–12 (2011) 

    Google Scholar 

  20. Arabnejad, S., Johnston, R.B., Pura, J.A., Singh, B., Tanzer, M., Pasini, D.: High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 30, 345–356 (2016)

    Google Scholar 

  21. Das, K.R., Imon, A.: A brief review of tests for normality. Am. J. Theor. Appl. Stat. 5, 5–12 (2016)

    Google Scholar 

  22. Fishlock, A., Patel, N.: Paget’s disease of bone. Orthop. Trauma 32, 245–252 (2018)

    Google Scholar 

  23. Scott-Baumann, A.: The modulus of elasticity. Francosphères. 7, 147–163 (2018)

    Google Scholar 

  24. Isaza, S.J.: Characterization of the mechanical and morphological properties of cortical bones by nanoindentation and Atomic Force Microscopy (2014)

    Google Scholar 

  25. Mayya, A., Banerjee, A., Rajesh, R.: Haversian microstructure in bovine femoral cortices: an adaptation for improved compressive strength. Mater. Sci. Eng. C. 59, 454–463 (2016)

    Google Scholar 

  26. Helgasson, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S., Viceconti, M.: Mathematical relationships between bone density and material properties: A literature review. Clin. Biomech. 23, 135–146 (2008)

    Google Scholar 

  27. Wang, X.J., Chen, X.B., Hodgson, P.D., Wen, C.E.: Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation. Trans. Nonferrous Met. Soc. China 16, s744–s748 (2006)

    Google Scholar 

  28. Qu, H., Fu, H., Han, Z., Sun, Y.: Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 9, 26252–26262 (2019)

    Google Scholar 

  29. Rollo, J.M.D. de A., Boffa, R.S., Cesar, R., Schwab, D.C., Leivas, T.P.: Assessment of trabecular bones microarchitectures and crystal structure of hydroxyapatite in bone osteoporosis with application of the Rietveld method. Procedia Eng. 110, 8–14 (2015)

    Google Scholar 

  30. Ramesh, S., et al.: Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceram. Int. 44, 10525–10530 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Erbereli .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest and Acknowledgment

The authors declare no conflicts of interest and the present work was carried out with the support of the Coordination of Improvement of Superior - Brazil (CAPES) - Financing Code 001.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erbereli, R., de Camargo, I.L., Marcondes, C.R., Tullio, R.R., Fortulan, C.A., de Almeida Rollo, J.M.D. (2023). Characterization of the Bones of Different Bovine Breeds Based on the Microarchitecture of the Bone Tissue. In: Iano, Y., Saotome, O., Kemper Vásquez, G.L., de Moraes Gomes Rosa, M.T., Arthur, R., Gomes de Oliveira, G. (eds) Proceedings of the 8th Brazilian Technology Symposium (BTSym’22). BTSym 2022. Smart Innovation, Systems and Technologies, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-031-31007-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31007-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31006-5

  • Online ISBN: 978-3-031-31007-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics