Skip to main content

The Hair and Scalp in Systemic Infectious Disease

  • Chapter
  • First Online:
Hair in Infectious Disease

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Headington JT. Telogen effluvium. New concepts and review. Arch Dermatol. 1993;129:356–63.

    Article  CAS  PubMed  Google Scholar 

  2. Trüeb RM. Telogen effluvium: is there a need for a new classification? Skin Appendage Disord. 2016;2(1–2):39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Philpott MP, Sander DA, Bowen J, Kealey T. Effects of interleukins, colony stimulating factor and tumor necrosis factor on human hair follicle growth in vitro: a possible role for interleukin-1 and tumor necrosis factor-alpha in alopecia areata. Br J Dermatol. 1996;135:942–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ito T, Ito N, Saathoff M, Bettermann A, Takigawa M, Paus R. Interferon-gamma is a potent inducer of catagen-like changes in cultured human anagen hair follicles. Br J Dermatol. 2005;152:623–31.

    Article  CAS  PubMed  Google Scholar 

  5. Spencer LV, Callen JP. Hair loss in systemic disease. Dermatol Clin. 1987;5(3):565–70.

    Article  CAS  PubMed  Google Scholar 

  6. Reed C, Biggerstaff M, Finelli L, Koonin LM, Beauvais D, Uzicanin A, Plummer A, Bresee J, Redd SC, Jernigan DB. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg Infect Dis. 2013;19(1):85–91.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Honigsbaum M. The pandemic century. A history of global contagion from the Spanish flu to Covid-19. London: Penguin Random House UK; 2020.

    Google Scholar 

  8. Freeman D, Bentall RP. The concomitants of conspiracy concerns. Soc Psychiatry Psychiatr Epidemiol. 2017;52(5):595–604.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barron D, Morgan K, Towell T, Altemeyer B, Swami V. Associations between schizotypy and belief in conspiracist ideation. Personal Individ Differ. 2014;70:156–9.

    Article  Google Scholar 

  10. Douglas KM, Sutton RM. Does it take one to know one? Endorsement of conspiracy theories is influenced by personal willingness to conspire. Br J Soc Psychol. 2011;10(3):544–52.

    Article  Google Scholar 

  11. Kent ME, Romanelli F. Reexamining syphilis: an update on epidemiology, clinical manifestations, and management. Ann Pharmacother. 2008;42(2):226–36.

    Article  CAS  PubMed  Google Scholar 

  12. Armelagos GJ. The science behind pre-Columbian evidence of syphilis in Europe: research by documentary. Evol Anthropol. 2012;21(2):50–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Farhi D, Dupin N. Origins of syphilis and management in the immunocompetent patient: facts and controversies. Clin Dermatol. 2010;28(5):533–8.

    Article  PubMed  Google Scholar 

  14. Rayment M, Sullivan AK, et al. “He who knows syphilis knows medicine”—the return of an old friend. Br J Cardiol. 2011;18:56–8.

    Google Scholar 

  15. Dayan L, Ooi C. Syphilis treatment: old and new. Expert Opin Pharmacother. 2005;6(13):2271–80.

    Article  CAS  PubMed  Google Scholar 

  16. García-Montero P, Repiso-Jiménez JB, García-Harana C. Syphilitic alopecia of the eyebrows and eyelashes [Article in Spanish]. Actas Dermosifiliogr (Engl Ed). 2019;110(2):e12.

    Article  PubMed  Google Scholar 

  17. Pareek SS. Unusual location of syphilitic alopecia: a case report. Sex Transm Dis. 1982;9(1):43–4.

    Article  CAS  PubMed  Google Scholar 

  18. Jordaan HF, Louw M. The moth-eaten alopecia of secondary syphilis. A histopathological study of 12 patients. Am J Dermatopathol. 1995;17(2):158–62.

    Article  CAS  PubMed  Google Scholar 

  19. Bernárdez C, Molina-Ruiz AM, Requena L. Histologic features of alopecias-part I: nonscarring alopecias. Actas Dermosifiliogr. 2015;106(3):158–67.

    Article  PubMed  Google Scholar 

  20. Chang KM, Nadi L, Wallach F. Secondary syphilis with alopecia and ocular manifestation. J Microbiol Immunol Infect. 2021;54(4):758–9.

    Article  PubMed  Google Scholar 

  21. Jegerlehner S, Vogel D, Tappeiner C, Leib SL. What vision loss might bring to light [article in German]. Praxis (Bern 1994). 2012;101(6):419–23.

    Article  CAS  PubMed  Google Scholar 

  22. McNally MA, Murira A, Dillard CM, Aisenberg G. The great masquerader: syphilis mimicking papilledema and traction alopecia. Cureus. 2020;12(3):e739.

    Google Scholar 

  23. Terada M, Hayashi S, Kaminaga T, et al. Cutaneous tertiary syphilitic gumma on the scalp. J Eur Acad Dermatol Venereol. 2022;36(5):e350–2. https://doi.org/10.1111/jdv.17863.

    Article  CAS  PubMed  Google Scholar 

  24. Eccleston K, Collins L, Higgins SP. Primary syphilis. Int J STD AIDS. 2008;19(3):145–51.

    Article  PubMed  Google Scholar 

  25. Campion EW, Ghanem KG, Ram S, Rice PA. The modern epidemic of syphilis. N Engl J Med. 2020;382(9):845–54.

    Article  Google Scholar 

  26. Desai M, Field N, Grant R. Sheena McCormack recent advances in pre-exposure prophylaxis for HIV. BMJ. 2017;359:j5011.

    Article  PubMed  Google Scholar 

  27. De Cock KM, Jaffe HW, Curran JW. The evolving epidemiology of HIV/AIDS. AIDS. 2012;26(10):1205–13.

    Article  PubMed  Google Scholar 

  28. Duesberg P. HIV is not the cause of AIDS. Science. 1988;241(4865):514–7.

    Article  CAS  PubMed  Google Scholar 

  29. Smith TC, Novella SP. HIV denial in the internet era. PLoS Med. 2007;4(8):e256.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, McKenna MT. Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years – United States, 2008. MMWR Recomm Rep. 2008;57(RR-10):1–12.

    PubMed  Google Scholar 

  31. Faria HA, Farnese M, Rocha LP, Olegário JGP, Cavellani CL, De Oliveira Guimarães CS, et al. Analysis of the scalp of women with AIDS subjected to autopsy: epithelial, follicular, and immunologic aspects. Ann Diagn Pathol. 2013;17(1):67–71.

    Article  PubMed  Google Scholar 

  32. Smith KJ, Skelton HG, DeRusso D, Sperling L, Yeager J, Wagner KF, et al. Clinical and histopathologic features of hair loss in patients with HIV-1 infection. J Am Acad Dermatol. 1996;34(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  33. Barcaui CB, da Silva AMG, Sotto MN, Genser B. Stem cell apoptosis in HIV-1 alopecia. J Cutan Pathol. 2006;33(10):667–71.

    Article  PubMed  Google Scholar 

  34. Woods EA, Foisy MM. Antiretroviral-related alopecia in HIV-infected patients. Ann Pharmacother. 2014;48(9):1187–93.

    Article  PubMed  Google Scholar 

  35. Lafeuillade A, Quilichini R, Chaffanjon P, Dhiver C, Gastaut JA. Alopecia universalis in a homosexual man seropositive for the human immunodeficiency virus. J Acquir Immune Defic Syndr. 1990;3:1019.

    CAS  PubMed  Google Scholar 

  36. Ostlere LS, Langtry JA, Staughton RC, Samrasinghe PL. Alopecia universalis in a patient seropositive for the human immunodeficiency virus. J Am Acad Dermatol. 1992;27(4):630–1.

    Article  CAS  PubMed  Google Scholar 

  37. Helm TN, Bergfeld WF, Yen-Lieberman B. Alopecia universalis in a patient seropositive for the human immunodeficiency virus. J Am Acad Dermatol. 1993;29(2 Pt 1):283–4.

    Article  CAS  PubMed  Google Scholar 

  38. Werninghaus K, Kaminer MS. HIV and alopecia universalis. J Am Acad Dermatol. 1993;29(4):667.

    Article  CAS  PubMed  Google Scholar 

  39. Stewart MI, Smoller BR. Alopecia universalis in an HIV-positive patient: possible insight into pathogenesis. J Cutan Pathol. 1993;20(2):180–3.

    Article  CAS  PubMed  Google Scholar 

  40. Nikolic DS, Viero D, Tijé VC, Toutous-Trellu L. Alopecia universalis associated with vitiligo in an 18-year-old HIV-positive patient: highly active anti-retroviral therapy as first choice therapy? Acta Derm Venereol. 2014;94(1):116–7.

    Article  PubMed  Google Scholar 

  41. Sereti I, Sarlis NJ, Arioglu E, Turner ML, Mican JM. Alopecia universalis and graves’ disease in the setting of immune restoration after highly active antiretroviral therapy. AIDS. 2001;15:138–40.

    Article  CAS  PubMed  Google Scholar 

  42. Ramot Y, Tetro T, Levi I, Zlotogorski A. Remission of long-standing alopecia universalis after human immunodeficiency virus infection. Clin Exp Dermatol. 2014;39(3):399–400.

    Article  CAS  PubMed  Google Scholar 

  43. Sons JS, Chateau A, Dlova NC. A case of HIV-associated generalized syphilitic alopecia mimicking alopecia universalis. Int J Dermatol. 2022;61(1):e1–2.

    Article  PubMed  Google Scholar 

  44. Sadick NS. Clinical and laboratory evaluation of AIDS trichopathy. Int J Dermatol. 1993;32(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  45. Green SL, Nelso DL. Straightening of the hair is not pathognomonic for HIV infection. Clin Infect Dis. 2002;35(10):1276–7.

    Article  PubMed  Google Scholar 

  46. Ajose FOA. Diseases that turn African hair silky. Int J Dermatol. 2012;51(Suppl. 1):12–6.

    Article  PubMed  Google Scholar 

  47. Almagro M, del Pozo J, García-Silva J, Martínez W, Castro A, Fonseca E. Eyelash length in HIV-infected patients. AIDS. 2003;17:1695–6.

    Article  PubMed  Google Scholar 

  48. Tosti A, Gaddoni G, Peluso AM, Misciali C, Piraccini BM, Menni B. Acquired hairy pinnae in a patient infected with the human immunodeficiency virus. Am Acad Dermatol. 1993;28(3):513.

    Article  CAS  Google Scholar 

  49. Tzung TY, Yang CY, Chao SC, Lee JYY. Cutaneous manifestations of human immunodeficiency virus infection in Taiwan. Kaohsiung J Med Sci. 2004;20(5):216–24.

    Article  PubMed  Google Scholar 

  50. MacKowiak PA. A patient with AIDS and fungating lesions of the face and scalp. Clin Infect Dis. 2011;52(8):1077–8.

    Article  Google Scholar 

  51. Cedeno-Laurent F, Gámez-Flores M, Mendez N, Ancer-Rodríguez J, Bryant JL, Gaspari AA, et al. New insights into HIV-1-primary skin disorders. J Int AIDS Soc. 2011;14(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Simpson-Dent SL, Fearfield LA, Staughton RCD. HIV associated eosinophilic folliculitis - differential diagnosis and management. Sex Transm Infect. 1999;75(5):291–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clark GW, Pope SM, Jaboori KA. Diagnosis and treatment of seborrheic dermatitis. Am Fam Physician. 2015;91(3):185–90.

    PubMed  Google Scholar 

  54. Krzyściak P, Bakuła Z, Gniadek A, Garlicki A, Tarnowski M, Wichowski M, et al. Prevalence of Malassezia species on the skin of HIV-seropositive patients. Sci Rep. 2020;10(1):1–13.

    Article  Google Scholar 

  55. An Q, Sun M, Qi RQ, Zhang L, Zhai JL, Hong YX, et al. High staphylococcus epidermidis colonization and impaired permeability barrier in facial seborrheic dermatitis. Chin Med J. 2017;130(14):1662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Okokon EO, Verbeek JH, Ruotsalainen JH, Ojo OA, Bakhoya VN. Topical antifungals for seborrhoeic dermatitis. Cochrane Database Syst Rev. 2015;(5):CD008138.

    Google Scholar 

  57. Bournerias I, De Chauvin MF, Datry A, Chambrette I, Carriere J, Devidas A, Blanc F. Unusual Microsporum canis infections in adult HIV patients. J Am Acad Dermatol. 1996;35(5 Pt 2):808–10. https://doi.org/10.1016/s0190-9622(96)90089-4.

    Article  CAS  PubMed  Google Scholar 

  58. Weiler N, Mayer EF, Kazlouskaya V, Bamgbola OF, Banniettis N, Heilman E, et al. Infective dermatitis associated with HTLV-1 infection in a girl from Trinidad: case report and review of literature. Pediatr Dermatol. 2019;36(1):e12–6.

    Article  PubMed  Google Scholar 

  59. Steglich RB, Ricardo P, Souza M, Tonoli RE, Pinto GM. Associated myelopathy in an adolescent female. An Bras Dermatol. 2015;90(3):55–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Okajima R, Oliveira ACP, Smid J, Casseb J, Sanches JA. High prevalence of skin disorders among HTLV-1 infected individuals independent of clinical status. PLoS Negl Trop Dis. 2013;7(11):1–5.

    Article  Google Scholar 

  61. SWEET RD. A pattern of eczema in Jamaica. Br J Dermatol. 1966;78(2):93–100.

    Article  PubMed  Google Scholar 

  62. McGill NK, Vyas J, Shimauchi T, Tokura Y, Piguet V. HTLV-1-associated infective dermatitis: updates on the pathogenesis. Exp Dermatol. 2012;21(11):815–21.

    Article  CAS  PubMed  Google Scholar 

  63. Bravo FG. Infective dermatitis: a purely cutaneous manifestation of HTLV-1 infection. Semin Diagn Pathol. 2020;37(2):92–7. https://doi.org/10.1053/j.semdp.2019.04.002.

    Article  PubMed  Google Scholar 

  64. Setoyama M, Kerdel FA, Elgart G, Kanzaki T, Byrnes JJ. Detection of HTLV-1 by polymerase in situ hybridization in adult T-cell leukemia/lymphoma. Am J Pathol. 1998;152(3):683–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Araújo MG, Carneiro-Proietti ABF, Guedes ACM, Gonçalves DU, Proietti FA. Manifestações cutâneas da infecção e das doenças relacionadas ao vírus linfotrópico de células T humanas do tipo 1. An Bras Dermatol. 2008;83(5):393–407.

    Article  Google Scholar 

  66. Souza LS, Silva TS, Paim de Oliveira M d F, Farre L, Bittencourt AL. Clinicopathological aspects and proviral load of adulthood infective dermatitis associated with htlv-1: comparison between juvenile and adulthood forms. PLoS Negl Trop Dis. 2020;14(4):1–11.

    Article  Google Scholar 

  67. Gould EA, Solomon T. Pathogenic flaviviruses. Lancet. 2008;371(9611):500–9.

    Article  CAS  PubMed  Google Scholar 

  68. Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009;22(4):564–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.

    Article  CAS  PubMed  Google Scholar 

  70. Guzman MG, Halstead SB, Artsob H, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12 Suppl):S7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reiter P. Yellow fever and dengue: a threat to Europe? Euro Surveill. 2010;15(10):19509.

    Article  CAS  PubMed  Google Scholar 

  72. Whitehorn J, Farrar J. Dengue. Br Med Bull. 2010;95:161–73.

    Article  PubMed  Google Scholar 

  73. Ranjit S, Kissoon N. Dengue hemorrhagic fever and shock syndromes. Pediatr Crit Care Med. 2011;12(1):90–100.

    Article  PubMed  Google Scholar 

  74. Simmons CP, Farrar JJ, Nguyen VV, Wills B. Dengue. N Engl J Med. 2012;366(15):1423–32.

    Article  CAS  PubMed  Google Scholar 

  75. Kularatne SA. Dengue fever. BMJ. 2015;351:h4661.

    Article  PubMed  Google Scholar 

  76. Paixão ES, Teixeira MG, Costa MN, Rodrigues LC. Dengue during pregnancy and adverse fetal outcomes: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(7):857–65.

    Article  PubMed  Google Scholar 

  77. Wiwanitkit V. Unusual mode of transmission of dengue. J Infect Dev Ctries. 2009;4(1):51–4.

    Article  PubMed  Google Scholar 

  78. Veraldi S, Vaira F, Raia DD, Barbareschi M. Telogen effluvium as first clinical presentation of dengue. G Ital Dermatol Venereol. 2017;152(2):184–5.

    PubMed  Google Scholar 

  79. Harn MR. Clinical study on dengue fever during 1987–1988 epidemic at Kaohsiung City, southern Taiwan [Article in Chinese]. Gaoxiong Yi Xue Ke Xue Za Zhi. 1989;5(1):58–65.

    CAS  PubMed  Google Scholar 

  80. Jensenius M, Gundersen SG, Vene S, Bruu AL. Dengue fever imported to Norway. Serologically confirmed cases 1991–96 [Article in Norwegian]. Tidsskr Nor Laegeforen. 1997;117(29):4230–3.

    CAS  PubMed  Google Scholar 

  81. de Almeida L, Teixeira S, dos Santos Nogueira FP, Nascentes GAN. Prospective study of patients with persistent symptoms of dengue in Brazil. Rev Inst Med Trop Sao Paulo. 2017;59:e65.

    Google Scholar 

  82. Hitani A, Yamaya W, Masako To, Kano I, Honda-Hosono N, Takasaki T, Haruki K. A case of dengue fever and subsequent long-lasting depression accompanied by alopecia in a Japanese traveler returning from Bali, Indonesia [Article in Japanese]. Kansenshogaku Zasshi. 2015;89(2):279–82.

    Article  PubMed  Google Scholar 

  83. Wei K-C, Chang M-SHT-H. Dengue virus infects primary human hair follicle dermal papilla cells. Front Cell Infect Microbiol. 2018;8:268.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wei K-C, Wei W-J, Liu Y-S, Yen L-C, Chang T-H. Assessment of prolonged dengue virus infection in dermal fibroblasts and hair-follicle dermal papilla cells. Viruses. 2020;12(3):267.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Powers AM, Brault AC, Tesh RB, Weaver SC. Re-emergence of chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81(Pt 2):471–9.

    CAS  PubMed  Google Scholar 

  86. Sahadeo NS, Allicock OM, De Salazar PM, Auguste AJ, Widen S, Olowokure B, Gutierrez C, Valadere AM, Polson-Edwards K, Weaver SC, Carrington CV. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol. 2017;3(1):vex010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Johansson MA. Chikungunya on the move. Trends Parasitol. 2015;31:43–5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 2007;3(6):e89.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ozden S, Huerre M, Riviere JP, Coffey LL, Afonso PV, Mouly V, et al. Human muscle satellite cells as targets of Chikungunya virus infection. PLoS One. 2007;2(6):e527.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N, Guivel-Benhassine F, et al. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med. 2010;207(2):429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rohatgi A, Corbo JC, Monte K, Higgs S, Vanlandingham DL, Kardon G, Lenschow DJ. Infection of myofibers contributes to increased pathogenicity during infection with an epidemic strain of chikungunya virus. J Virol. 2014;88(5):2414–25.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kril V, Aïqui-Reboul-Paviet O, Briant L, Amara A. New insights into chikungunya virus infection and pathogenesis. Annu Rev Virol. 2021;8(1):327–47.

    Article  PubMed  Google Scholar 

  93. Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372(13):1231–9.

    Article  CAS  PubMed  Google Scholar 

  94. Centers for Disease Control Prevention (CDC). Chikungunya fever diagnosed among international travelers--United States, 2005–2006. MMWR Morb Mortal Wkly Rep. 2006;55(38):1040–2.

    Google Scholar 

  95. Kumar R, Sharma MK, Jain SK, Yadav SK, Singhal AK. Cutaneous manifestations of chikungunya fever: observations from an outbreak at a tertiary Care Hospital in Southeast Rajasthan, India. Indian. Dermatol Online J. 2017;8(5):336–42.

    Article  Google Scholar 

  96. Kaleem S, Ghafoor R, Khan S. Mucocutaneous manifestations of Chikungunya fever, an experience of tertiary care hospital. J Pak Med Assoc. 2021;71(2(B)):619–23.

    PubMed  Google Scholar 

  97. Torres JR, Falleiros-Arlant LH, Dueñas L, Pleitez-Navarrete J, Salgado DM, Castillo JB-D. Congenital and perinatal complications of chikungunya fever: a Latin American experience. Int J Infect Dis. 2016;51:85–8.

    Article  PubMed  Google Scholar 

  98. Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. Chikungunya virus infection: an overview. New Microbiol. 2013;36(3):211–27.

    PubMed  Google Scholar 

  99. Schilte C, Staikowsky F, Staikovsky F, Couderc T, Madec Y, Carpentier F, et al. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7(3):e2137.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gérardin P, Fianu A, Michault A, Mussard C, Boussaïd K, Rollot O, et al. Predictors of chikungunya rheumatism: a prognostic survey ancillary to the TELECHIK cohort study. Arthritis Res Ther. 2013;15(1):R9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Olson KE, Haddow AD, Schuh AJ, et al. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis. 2012;6(2):e1477.

    Article  Google Scholar 

  102. Brasil P, Pereira JP Jr, Raja Gabaglia C, et al. Zika virus infection in pregnant women in Rio de Janeiro – preliminary report. N Engl J Med. 2016;375(24):2321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Brasil P, Pereira JP, Moreira ME, RMR N, Damasceno L, Wakimoto M, Rabello RS, Valderramos SG, Halai U-A. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016;375(24):2321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Boeuf P, Drummer HE, Richards JS, Scoullar MJL, Beeson JG. The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact. BMC Med. 2016;14(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen LH, Hamer DH. Ideas and opinions. Zika virus: rapid spread in the Western hemisphere. Ann Intern Med. 2016;164(9):613–5.

    Article  PubMed  Google Scholar 

  106. Chan JF, Choi GK, Yip CC, Cheng VC, Yuen KY. Zika fever and congenital Zika syndrome: An unexpected emerging arboviral disease. J Infect. 2016;72(5):507–24.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Oster AM, Russell K, Stryker JE, Friedman A, Kachur RE, Petersen EE, Jamieson DJ, Cohn AC, Brooks JT. Update: interim guidance for prevention of sexual transmission of Zika virus — United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65(12):323–5.

    Article  PubMed  Google Scholar 

  108. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.

    Article  CAS  PubMed  Google Scholar 

  109. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44.

    Article  Google Scholar 

  110. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jiang S, Xia S, Ying T, Lu L. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell Mol Immunol. 2020;17(5):554.

    Article  CAS  PubMed  Google Scholar 

  113. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, et al. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell Host Microbe. 2020;28(4):586–601.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39(7):2085–94.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Quirch M, Lee J, Rehman S. Hazards of the cytokine storm and cytokine-targeted therapy in patients with COVID-19: review. J Med Internet Res. 2020;22(8):e20193.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper. Front Immunol. 2020;11:1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020;16(6):1232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92(5):479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aristovnik A, Ravšelj D, Umek L. A bibliometric analysis of COVID-19 across science and social science research landscape. Sustainability. 2020;12(21):9132.

    Article  CAS  Google Scholar 

  125. Kupferschmidt K. First-of-its-kind African trial tests common drugs to prevent severe COVID-19. Science. 2020. https://doi.org/10.1126/science.abf9987.

  126. Cadegiani F, Lin EM, Goren A, et al. Potential risk for developing severe COVID-19 disease among anabolic steroid users. BMJ Case Rep. 2021;14:e241572.

    Article  PubMed  PubMed Central  Google Scholar 

  127. McCoy J, Goren A, Cadegiani FA, Vaño-Galván S, Kovacevic M, Situm M, Shapiro J, Sinclair R, Tosti A, Stanimirovic A, Fonseca D, Dorner E, Onety DC, Zimerman RA, Wambier CG. Proxalutamide reduces the rate of hospitalization for COVID-19 male outpatients: a randomized double-blinded placebo-controlled trial. Front Med (Lausanne). 2021;8:668698.

    Article  PubMed  Google Scholar 

  128. Frontiers Editorial Office. Retraction: Proxalutamide reduces the rate of hospitalization for COVID-19 male outpatients: a randomized double-blinded placebo-controlled trial. Front Med (Lausanne). 2022;9:964099.

    Article  Google Scholar 

  129. Taylor L. Covid-19: trial of experimental “covid cure” is among worst medical ethics violations in Brazil’s history, says regulator. BMJ. 2021;375:n2819. https://doi.org/10.1136/bmj.n2819.

    Article  PubMed  Google Scholar 

  130. Maccaro A, Piaggio D, Pagliara S, Pecchia L. The role of ethics in science: a systematic literature review from the first wave of COVID-19. Heal Technol. 2021;11(5):1063–71.

    Article  Google Scholar 

  131. Shinkai K, Bruckner AL. Dermatology and COVID-19. JAMA. 2020;22(324):1133–4.

    Article  Google Scholar 

  132. Goren A, McCoy J, Wambier CG, Vano-Galvan S, Shapiro J, Dhurat R, Washenik K, Lotti T. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatol Ther. 2020;33:e13365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McCoy J, Wambier CG, Vano-Galvan S, Shapiro J, Sinclair R, Ramos PM, Washenik K, Andrade M, Herrera S, Goren A. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J Cosmet Dermatol. 2020;19:1542–3.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83:308–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goren A, Vaño-Galván S, Wambier CG, McCoy J, Gomez-Zubiaur A, Moreno-Arrones OM, Shapiro J, Sinclair RD, Gold MH, Kovacevic M, Mesinkovska NA, Goldust M, Washenik K. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain - a potential clue to the role of androgens in COVID-19 severity. J Cosmet Dermatol. 2020;19:1545–7.

    Article  PubMed  Google Scholar 

  136. McCoy J, Wambier CG, Herrera S, Vaño-Galván S, Gioia F, Comeche B, Ron R, Serrano-Villar S, Iwasiow RM, Tayeb MA, Cadegiani FA, Mesinkovska NA, Shapiro J, Sinclair R, Goren A. Androgen receptor genetic variant predicts COVID-19 disease severity: a prospective longitudinal study of hospitalized COVID-19 male patients. J Eur Acad Dermatol Venereol. 2021;35(1):e15–7. https://doi.org/10.1111/jdv.16956.

    Article  CAS  PubMed  Google Scholar 

  137. Wambier CG, Goren A, Vaño-Galván S, Ramos PM, Ossimetha A, Nau G, Herrera S, McCoy J. Androgen sensitivity gateway to COVID-19 disease severity. Drug Dev Res. 2020;81:771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wambier CG, Vaño-Galván S, McCoy J, Pai S, Dhurat R, Goren A. Androgenetic alopecia in COVID-19: compared to age-matched epidemiologic studies and hospital outcomes with or without the Gabrin sign. J Am Acad Dermatol. 2020;83:e453–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wambier CG, Vaño-Galván S, McCoy J, Gomez-Zubiaur A, Herrera S, Hermosa-Gelbard Á, Moreno-Arrones OM, Jiménez-Gómez N, González-Cantero A, Fonda-Pascual P, Segurado-Miravalles G, Shapiro J, Pérez-García B, Goren A. Androgenetic alopecia present in the majority of patients hospitalized with COVID-19: the "Gabrin sign". J Am Acad Dermatol. 2020;83:680–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Trüeb RM, Régnier A, Caballero-Uribe N, Reis Gavazzoni Dias MF, Dutra RH. Extraordinary claims without extraordinary evidence: controversy on anti-androgen therapy for COVID-19. J Eur Acad Dermatol Venereol. 2021;35(8):e494–5.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nanes BA. Androgenetic alopecia in COVID-19: compared to what? J Am Acad Dermatol. 2020;83(6):e451. https://doi.org/10.1016/j.jaad.2020.06.1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bukovac D, Makše U. Comment on “Androgenetic alopecia present in the majority of patients hospitalized with COVID-19”. J Am Acad Dermatol. 2021;84(1):e51–2. https://doi.org/10.1016/j.jaad.2020.08.087.

    Article  CAS  PubMed  Google Scholar 

  143. Gabrin F. Discovering the ‘heart of care’. Med Econ. 2012;89:20–3.

    PubMed  Google Scholar 

  144. Trüeb RM, van Neste D, Gavazzoni Dias MFR, Kopera D, Lee WS, Ioannides D, Rezende HD, Fellas AR, Uribe NC. Comment on: the “Gabrin sign”. J Am Acad Dermatol. 2021;84(3):e147–8. https://doi.org/10.1016/j.jaad.2020.11.046.

    Article  PubMed  Google Scholar 

  145. Trüeb RM. Value of eponyms in dermato-trichological nomenclature. Skin Appendage Disord. 2018;4:71–7.

    Article  PubMed  Google Scholar 

  146. Kroumpouzos G. Effects of 5-alpha reductase inhibitors on lung function: a reason for discontinuation during COVID-19 pandemic? Dermatol Ther. 2020;33:e13535. https://doi.org/10.1111/dth.13535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Caffo O, Zagonel V, Baldessari C, Berruti A, Bortolus R, Buti S, Ceresoli GL, Donini M, Ermacora P, Fornarini G, Fratino L, Masini C, Massari F, Mosca A, Mucciarini C, Procopio G, Tucci M, Verri E, Zucali P, Buttigliero C. On the relationship between androgen-deprivation therapy for prostate cancer and risk of infection by SARS-CoV-2. Ann Oncol. 2020;31:1415–6.

    Article  CAS  PubMed  Google Scholar 

  148. Koskinen M, Carpen O, Honkanen V, Seppänen MRJ, Miettinen PJ, Tuominen JA, Raivio T. Androgen deprivation and SARS-CoV-2 in men with prostate cancer. Ann Oncol. 2020;31:1417–8.

    Article  CAS  PubMed  Google Scholar 

  149. Li Y, Jerkic M, Slutsky AS, Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit Care. 2020;24:405.

    Article  PubMed  PubMed Central  Google Scholar 

  150. van der Made CI, Simons A, Schuurs-Hoeijmakers J, van den Heuvel G, Manteres T, Kersten S, van Deuren RD, Steehowuer M, van Reijmersdal SV, Jaeger M, Hofste T, Astuti G, Galbany JC, van der Schoot V, van der Hoeven H, Hagmolen Of Ten Have W, Klijn E, van den Meer C, Fiddelaers J, de Mast Q, Bleeker-Rovers C, Joosten LAB, Yntema HG, Gilissen C, Melen M, van der Meer JWM, Brunner HG, Netea MG, van den Veerdionk FL, Hoischen A. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324:663–73.

    Article  PubMed  Google Scholar 

  151. Ramos PM, Ianhez M, Miot HA. Alopecia and grey hair are associated with COVID-19 severity. Exp Dermatol. 2020;29(12):1250–2. https://doi.org/10.1111/exd.14220.

    Article  CAS  Google Scholar 

  152. Gutersohn T, Scheidegger EP. Is baldness bad for the heart? Dermatology. 2005;211:72–4.

    Article  PubMed  Google Scholar 

  153. Shanshal M. COVID-19 related anagen effluvium. J Dermatolog Treat. 2020;33:1114–5.

    Article  PubMed  Google Scholar 

  154. Domínguez-Santás M, Haya-Martínez L, Fernández-Nieto D, Jiménez-Cauhé J, Suárez-Valle A, Díaz-Guimaraens B. Acute telogen effluvium associated with SARS-CoV-2 infection. Aust J Gen Pract. 2020;49.

    Google Scholar 

  155. Trüeb RM, Dutra Rezende H, Gavazzoni Dias MFR. What can the hair tell us about COVID-19? Exp Dermatol. 2021;30(2):288–90.

    Article  PubMed  Google Scholar 

  156. Gkalpakiotis S, Arenberger P, Sach J, Arenbergerova M. Temporal arteritis with scalp ulceration and blindness. J Dtsch Dermatol Ges. 2011;9(1):50–2.

    PubMed  Google Scholar 

  157. Starace M, Iorizzo M, Sechi A, Alessandrini AM, et al. Trichodynia and telogen effluvium in COVID-19 patients: results of an international expert opinion survey on diagnosis and management. JAAD Int. 2021;5:11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Trüeb RM, Starace MVR, Piraccini BM, Rezende HD, Reis Gavazzoni Dias MF. Trichodynia revisited. Skin Appendage Disord. 2021;7(6):449–53.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rivetti N, Barruscotti S. Management of telogen effluvium during the COVID-19 emergency: psychological implications. Dermatol Ther. 2020;33:e13648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Griesemer RD. Emotionally triggered disease in a dermatology practice. Psychiat Ann. 1978;8:49–56.

    Article  Google Scholar 

  161. Peters EM, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol. 2006;15:1–13.

    Article  CAS  PubMed  Google Scholar 

  162. Maffei C, Fossati A, Rinaldi F, Riva E. Personality disorders and psychopathologic symptoms in patients with androgenetic alopecia. Arch Dermatol. 1994;130:868–72.

    Article  CAS  PubMed  Google Scholar 

  163. Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global prevalence of post COVID-19 condition or long COVID: a meta-analysis and systematic review. J Infect Dis. 2022;226(9):1593–607.

    Article  CAS  PubMed  Google Scholar 

  164. Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers. J Nurse Pract. 2021;17(8):946–9.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  166. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–7.

    Article  CAS  PubMed  Google Scholar 

  167. Greenhalgh T, Knight M, A'Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026.

    Article  PubMed  Google Scholar 

  168. Mahase E. Long covid could be four different syndromes, review suggests. BMJ. 2020;371:m3981.

    Article  PubMed  Google Scholar 

  169. Pretorius E, Vlok M, Venter C, Bezuidenhout JA, Laubscher GJ, Steenkamp J, Kell DB. Persistent clotting protein pathology in long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol. 2021;20(1):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S, Herzog C, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wallukat G, Hohberger B, Wenzel K, Fürst J, Schulze-Rothe S, Wallukat A, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bertin D, Kaphan E, Weber S, Babacci B, Arcani R, Faucher B, et al. Persistent IgG anticardiolipin autoantibodies are associated with post-COVID syndrome. Int J Infect Dis. 2021;113:23–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liu Q, Mak JWY, Qi S, Yeoh YK, Lui GC-Y, Ng SSS, Zhang F, Li AYL, Wenqi L, Hui DS-C, Chan PK, Chan FKL, Ng SC. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71(3):544–52.

    Article  CAS  PubMed  Google Scholar 

  175. Pinna G. Sex and COVID-19: a protective role for reproductive steroids. Trends Endocrinol Metab. 2021;32(1):3–6.

    Article  CAS  PubMed  Google Scholar 

  176. Hastie CE, Lowe DJ, McAuley A, Winter AJ, Mills NL, Black C, Scott JT, O'Donnell CA, Blane DN, Browne S, Ibbotson TR, Pell JP. Outcomes among confirmed cases and a matched comparison group in the long-COVID in Scotland study. Nat Commun. 2022;13(1):5663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Harenwall S, Heywood-Everett S, Henderson R, Smith J, McEnery R, Bland AR. The interactive effects of post-traumatic stress symptoms and breathlessness on fatigue severity in post-COVID-19 syndrome. J Clin Med. 2022;11(20):6214.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. Prog Nucl Magn Reson Spectrosc. 2021;122:42–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ceban F, Leber A, Jawad MY, Yu M, Lui LM, Subramaniapillai M, et al. Registered clinical trials investigating treatment of long COVID: a scoping review and recommendations for research. Infect Dis. 2022;54(7):467–77.

    Article  CAS  Google Scholar 

  180. Harenwall S, Heywood-Everett S, Henderson R, Godsell S, Jordan S, Moore A, et al. Post-Covid-19 syndrome: improvements in health-related quality of life following psychology-led interdisciplinary virtual rehabilitation. J Prim Care Community Health. 2021;12:21501319211067674.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Garrigues E, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81:e4–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xiong Q, et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect. 2021;27:89–95.

    Article  CAS  PubMed  Google Scholar 

  184. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383:2603–15.

    Article  CAS  PubMed  Google Scholar 

  185. McMahon DE, Amerson E, Rosenbach M. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: a registry-based study of 414 cases. J Am Acad Dermatol. 2021;85(1):46–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rossi A, Magri F, Michelini S, Caro G, Di Fraia M, Fortuna MC, Pellacani G, Carlesimo M. Recurrence of alopecia areata after covid-19 vaccination: a report of three cases in Italy. J Cosmet Dermatol. 2021;20(12):3753–7.

    Article  PubMed  Google Scholar 

  187. Scollan ME, Breneman A, Kinariwalla N, Soliman Y, Youssef S, Bordone LA, Gallitano SM. Alopecia areata after SARS-CoV-2 vaccination. JAAD Case Rep. 2022;20:1–5.

    Article  PubMed  Google Scholar 

  188. Essam R, Ehab R, Al-Razzaz R, Khater MW, Moustafa EA. Alopecia areata after ChAdOx1 nCoV-19 vaccine (Oxford/AstraZeneca): a potential triggering factor? J Cosmet Dermatol. 2021;20(12):3727–9. https://doi.org/10.1111/jocd.14459.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Aktas H, Ertuğrul G. Vitiligo in a COVID-19-vaccinated patient with ulcerative colitis: coincidence? Clin Exp Dermatol. 2022;47:143–4. https://doi.org/10.1111/ced.14842.

    Article  CAS  PubMed  Google Scholar 

  190. Kaminetsky J, Rudikoff D. New-onset vitiligo following mRNA-1273 (Moderna) COVID-19 vaccination. Clin Case Rep. 2021;9(9):e04865. https://doi.org/10.1002/ccr3.4865.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Harris JE. Vitiligo and alopecia areata: apples and oranges? Exp Dermatol. 2013;22(12):785–9.

    Article  PubMed  Google Scholar 

  192. Cardozo T, Veazey R. Informed consent disclosure to vaccine trial subjects of risk of COVID-19 vaccines worsening clinical disease. Int J Clin Pract. 2021;75(3):e13795.

    Article  CAS  PubMed  Google Scholar 

  193. Muller SA. Climate change, dermatology and ecosystem services; trends and trade-offs. Int J Dermatol. 2011;50(5):504–7.

    Article  PubMed  Google Scholar 

  194. Dayrit JF, Sugiharto A, Coates SJ, Lucero-Prisno DE 3rd, Davis MDD, Andersen LK. Climate change, human migration, and skin disease: is there a link? Int J Dermatol. 2022;61(2):127–38.

    Article  PubMed  Google Scholar 

  195. Coates SJ, Norton SA. The effects of climate change on infectious diseases with cutaneous manifestations. Int J Womens Dermatol. 2021;7(1):8–16.

    Article  PubMed  Google Scholar 

  196. Kaffenberger BH, Shetlar D, Norton SA, Rosenbach M. The effect of climate change on skin disease in North America. J Am Acad Dermatol. 2017;76(1):140–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph M. Trüeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trüeb, R.M., Gavazzoni Dias, M.F.R., Dutra Rezende, H., de la Cruz Vargas Vilte, R.M., Romiti, R. (2023). The Hair and Scalp in Systemic Infectious Disease. In: Trüeb, R.M., Dutra Rezende, H., Gavazzoni Dias, M.F.R. (eds) Hair in Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-30754-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30754-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30753-9

  • Online ISBN: 978-3-031-30754-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics