Skip to main content

Microbial Adulterants in Food: Challenges to Overcome

  • Chapter
  • First Online:
Engineering Aspects of Food Quality and Safety

Part of the book series: Food Engineering Series ((FSES))

  • 314 Accesses

Abstract

Foodborne diseases owing to pathogens in food are a global health problem accounting for the death of 2.2 million people per year. Further, the appearance of new and resistant pathogens has complicated the efforts of food regulatory agencies to ensure the delivery of safe food products to the general public. Thus, the major challenge faced by the food processing industry is to look for innovative strategies for microbial decontamination of food that will enable the safe delivery of food products with high shelf life and quality. Conventionally, thermal and chemical approaches formed the mainstay of food decontamination. However, thermal treatment cannot be universally applied, as in the case of fruits rich in heat labile antioxidants. Similarly, chemical strategies for microbial decontamination are less preferred owing to toxicity and undesirable residues. In this scenario, the food processing industry is resorting to new innovative techniques such as electrolyzed water, high pressure processing, pulsed electric fields, etc. The present chapter endorses the causes, routes, and mechanisms of microbial food spoilage and foodborne infections, novel technologies for controlling foodborne pathogens, and the need to monitor food contamination and its effect on the economy. This will assist food manufacturers, food processing professionals, and the broader population to become more aware of foodborne diseases and clearly understand the recent advances in food processing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alum EA, Urom SMOC, Ben CMA (2016) Microbiological contamination of food: the mechanisms, impacts and prevention. Int J Sci Technol Res 5:65–78

    Google Scholar 

  • Amit SK, Uddin MM, Rahman R, Islam SR, Khan MS (2017) A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur 6:1–22. https://doi.org/10.1186/s40066-017-0130-8

    Article  Google Scholar 

  • Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198:229–238

    Article  CAS  PubMed  Google Scholar 

  • Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine — a review. Int J Food Microbiol 125:60–70. https://doi.org/10.1016/j.ijfoodmicro.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  • Bhat RV (2004) Safety and quality of processed foods. Indian Food Ind 23:58–61

    Google Scholar 

  • Bintsis T (2017) Foodborne pathogens. AIMS Microbiol 3:529–563. https://doi.org/10.3934/microbiol.2017.3.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulut N, Atmaca B, Akdemir Evrendilek G, Uzuner S (2020) Potential of pulsed electric field to control Aspergillus parasiticus, aflatoxin and mutagenicity levels: sesame seed quality. J Food Saf 40(6):e12855

    Article  CAS  Google Scholar 

  • Chen D, Cheng Y, Peng P, Liu J, Wang Y, Ma Y et al (2019) Effects of intense pulsed light on Cronobacter sakazakii and Salmonella surrogate Enterococcus faecium inoculated in different powdered foods. Food Chem 296:23–28

    Article  CAS  PubMed  Google Scholar 

  • de São José JFB, de Andrade NJ, Ramos AM, Vanetti MCD, Stringheta PC, Chaves JBP (2014) Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 45:36–50

    Article  Google Scholar 

  • ECDC E. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in. 2014;13:4036

    Google Scholar 

  • Elmnasser N, Guillou S, Leroi F, Orange N, Bakhrouf A, Federighi M (2007) Pulsed-light system as a novel food decontamination technology: a review. Can J Microbiol 53:813–821

    Article  CAS  PubMed  Google Scholar 

  • Gizaw Z (2019) Public health risks related to food safety issues in the food market: a systematic literature review. Environ Health Prev Med 24:1–21. https://doi.org/10.1186/s12199-019-0825-5

    Article  Google Scholar 

  • Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov ME (2002) Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol 78:79–97. https://doi.org/10.1016/S0168-1605(02)00233-7

    Article  PubMed  Google Scholar 

  • Green L, Selman C (2005) Factors impacting food workers’ and managers’ safe food preparation practices: a qualitative study. Food Protec Trend 25:981–990

    Google Scholar 

  • Hashemi SMB, Gholamhosseinpour A, Niakousari M (2019) Application of microwave and ohmic heating for pasteurization of cantaloupe juice: microbial inactivation and chemical properties. J Sci Food Agric 99:4276–4286

    Article  CAS  PubMed  Google Scholar 

  • Hobson NS, Tothill I, Turner AP (1996) Microbial detection. Biosens Bioelectron 11:455–477. https://doi.org/10.1016/0956-5663(96)86783-2

    Article  CAS  PubMed  Google Scholar 

  • Hussain MA, Dawson CO (2013) Economic impact of food safety outbreaks on food businesses. Foods 2:585–589. https://doi.org/10.3390/foods2040585

    Article  PubMed  PubMed Central  Google Scholar 

  • Juneja VK, Sheen S, Tewari G (2007) Intervention technologies for food safety and preservation. In: Wilson CL (ed) Microbial food contamination. CRC Press, pp 347–393

    Google Scholar 

  • Kirch W (2008) Microbiological hazards, food safety. In: Encyclopedia of public health. Springer, p 457

    Chapter  Google Scholar 

  • Liang D, Wang Q, Zhao D, Han X, Hao J (2019) Systematic application of slightly acidic electrolyzed water (SAEW) for natural microbial reduction of buckwheat sprouts. LWT – Food Sci Technol 108:14–20

    Article  CAS  Google Scholar 

  • Majid I, Nayik GA, Nanda V (2015) Ultrasonication and food technology: a review. Cogent Food Agric 1:1071022. https://doi.org/10.1080/23311932.2015.1071022

    Article  CAS  Google Scholar 

  • Makroo HA, Rastogi NK, Srivastava B (2020) Ohmic heating assisted inactivation of enzymes and microorganisms in foods: a review. Trends Food Sci Technol 97:451–465

    Article  CAS  Google Scholar 

  • Maurice Bilung L, Sin Chai L, Tahar AS, Ted CK, Apun K (2018) Prevalence, genetic heterogeneity, and antibiotic resistance profile of Listeria spp. and Listeria monocytogenes at farm level: a highlight of ERIC-and BOX-PCR to reveal genetic diversity. Biomed Res Int 2018:3067494. https://doi.org/10.1155/2018/3067494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Gudiño J, Rivera-Garcia A, Santos-Ferro L, Ramirez-Orejel JC, Agredano-Moreno LT, Jimenez-Garcia LF et al (2020) Analysis of Neutral Electrolyzed Water anti-bacterial activity on contaminated eggshells with Salmonella enterica or Escherichia coli. Int J Food Microbiol 320:108538

    Article  PubMed  Google Scholar 

  • Mendes-Oliveira G, Jin TZ, Campanella OH (2021) Microbial safety and shelf-life of pulsed electric field processed nutritious juices and their potential for commercial production. J Food Process Preserv 46:e16249

    Google Scholar 

  • Mohamed ME, Eissa AH (2012) Pulsed electric fields for food processing technology. Structure and function of food engineering. https://www.intechopen.com/chapters/38363

  • Naik L, Sharma R, Rajput YS, Manju G (2013) Application of high-pressure processing technology for dairy food preservation-future perspective: a review. J Anim Prod Adv 3(8):232–241. https://doi.org/10.5455/japa.20120512104313

    Article  Google Scholar 

  • Noor R (2019) Insight to foodborne diseases: Proposed models for infections and intoxications. Biomed Biotechnol Res J 3(3):135

    Google Scholar 

  • Osaili TM, Al-Nabulsi AA, Al Sheikh YM, Alaboudi AR, Olaimat AN, Al-Holy M et al (2021) Inactivation of Salmonella spp., Escherichia coli O157: H7 and Listeria monocytogenes in Tahini by Microwave Heating. Food 10(12):2972

    Article  CAS  Google Scholar 

  • Perez-Arnedo I, Gonzalez-Fandos E (2019) Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant. Foods 8:111. https://doi.org/10.3390/foods8030111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleissner D (2018) Recycling and reuse of food waste. Curr. Opin. Green sustain. Chem 1(13):39–43

    Google Scholar 

  • Rawat S (2015) Food spoilage: microorganisms and their prevention. Asian J Plant Sci 5:47–56

    CAS  Google Scholar 

  • Saad M, See TP, Abdullah MF, Nor NM (2013) Use of rapid microbial kits for regular monitoring of food-contact surfaces towards hygiene practices. Procedia Soc Behav Sci 105:273–283. https://doi.org/10.1016/j.sbspro.2013.11.029

    Article  Google Scholar 

  • Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89:105–124. https://doi.org/10.1016/S0168-1605(03)00153-3

    Article  CAS  PubMed  Google Scholar 

  • Ssemanda JN, Reij MW, van Middendorp G, Bouw E, van der Plaats R, Franz E, Muvunyi CM, Bagabe MC, Zwietering MH, Joosten H (2018) Foodborne pathogens and their risk exposure factors associated with farm vegetables in Rwanda. Food Control 89:86–96. https://doi.org/10.1016/j.foodcont.2017.12.034

    Article  Google Scholar 

  • Stratakos AC, Inguglia ES, Linton M, Tollerton J, Murphy L, Corcionivoschi N et al (2019) Effect of high pressure processing on the safety, shelf life and quality of raw milk. Innov Food Sci Emerg Technol 52:325–333

    Article  CAS  Google Scholar 

  • Sudershan RV, Naveen Kumar R, Kashinath L, Bhaskar V, Polasa K (2010) Economic impact of a food borne disease outbreak in Hyderabad-a case study. Indian J Nutr Diet 47:246–251

    Google Scholar 

  • Tamang JP, Shin DH, Jung SJ, Chae SW (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao T, Ding C, Han N, Cui Y, Liu X, Zhang C (2019) Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: effects on quality attributes during storage. Food Pack Shelf Life 21:100358

    Article  Google Scholar 

  • Tao Q, Wu Q, Zhang Z, Liu J, Tian C, Huang Z, Malakar PK, Pan Y, Zhao Y (2022) Meta-analysis for the global prevalence of foodborne pathogens exhibiting antibiotic resistance and biofilm formation. Front Microbiol 13:906490.

    Google Scholar 

  • Tauxe RV, Doyle MP, Kuchenmüller T, Schlundt J, Stein CE (2010) Evolving public health approaches to the global challenge of foodborne infections. Int J Food Microbiol 139:16–28. https://doi.org/10.1016/j.ijfoodmicro.2009.10.014

    Article  Google Scholar 

  • Tavsanli H, Aydin M, Ede ZA, Cibik RECEP (2021) Influence of ultrasound application on the microbiota of raw goat milk and some food pathogens including Brucella melitensis. Food Sci Technol Int 28:634–640

    Article  PubMed  Google Scholar 

  • Thakali A, MacRae JD (2021) A review of chemical and microbial contamination in food: what are the threats to a circular food system? Environ Res 194:110635

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang S, Goon K, Gilbert A, Huu CN, Walsh M et al (2020) Inactivation of foodborne pathogens based on synergistic effects of ultrasound and natural compounds during fresh produce washing. Ultrason Sonochem 64:104983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Biotechnology, New Delhi, for research funding of the Indo-EU collaborative project “Strategic Planning for Water Resources and Implementation of Novel Biotechnical Treatment solutions and Good Practices (SPRING)” (Sanction No. BT/IN/EU-WR/60/S.P./2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjukta Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, B., Kalita, B., Hazarika, R., Patra, S. (2023). Microbial Adulterants in Food: Challenges to Overcome. In: Hebbar, H.U., Sharma, R., Chaurasiya, R.S., Ranjan, S., Raghavarao, K. (eds) Engineering Aspects of Food Quality and Safety. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-031-30683-9_3

Download citation

Publish with us

Policies and ethics