Skip to main content

Subgraph Reconstruction via Reversible Subgraph Embedding

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13945))

Included in the following conference series:

  • 1513 Accesses

Abstract

Reconstructing a subgraph through an embedding is very useful for many subgraph-level tasks, e.g., subgraph matching and minimum Steiner tree problem. To support subgraph reconstruction, a naive approach is materializing subgraph embeddings for all possible candidate subgraphs in advance, which is impractical since the subgraphs are exponential to the size of the input graph. Therefore, it is desired to devise a subgraph embedding based on which the subgraph can be reconstructed. To the end, we develop a novel reversible subgraph embedding in this paper. By importing the compressed sensing theory into learning node embeddings, we design a reversible read-out operation such that the aggregation vector can be recovered according to the subgraph embedding, where the aggregation vector acts as a bridge between the adjacency matrix and subgraph embedding. To reconstruct the structure of the subgraph from the decoded aggregation vector, we present a bijective rule by applying a simple transformation between binary number and decimal number with a scale operation. We conduct extensive experiments over real graphs to evaluate the proposed subgraph embedding. Experimental results demonstrate that our proposed method greatly and consistently outperforms the baselines in three tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abolghasemi, V., Ferdowsi, S., Sanei, S.: A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process. 92(4), 999–1009 (2012)

    Article  Google Scholar 

  2. Abu-El-Haija, S., Perozzi, B., Al-Rfou, R., Alemi, A.A.: Watch your step: learning node embeddings via graph attention. In: NeurIPS, pp. 9198–9208 (2018)

    Google Scholar 

  3. Adhikari, B., Zhang, Y., Ramakrishnan, N., Prakash, B.A.: Sub2vec: feature learning for subgraphs. In: PAKDD, pp. 170–182 (2018)

    Google Scholar 

  4. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Y., Xu, D., Sun, Y., Wang, W.: GLSearch: maximum common subgraph detection via learning to search. In: ICML, vol. 139, pp. 588–598 (2021)

    Google Scholar 

  6. Balalau, O., Goyal, S.: SubRank: subgraph embeddings via a subgraph proximity measure. In: PAKDD, pp. 487–498 (2020)

    Google Scholar 

  7. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous b-spline kernels. In: CVPR, pp. 869–877 (2018)

    Google Scholar 

  9. Ge, Y., Bertozzi, A.L.: Active learning for the subgraph matching problem. In: Big Data, pp. 2641–2649 (2021)

    Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  11. Hao, Z., et al.: ASGN: an active semi-supervised graph neural network for molecular property prediction. In: SIGKDD, pp. 731–752. ACM (2020)

    Google Scholar 

  12. Huang, K., Zitnik, M.: Graph meta learning via local subgraphs. In: NeurIPS (2020)

    Google Scholar 

  13. Iwata, Y., Shigemura, T.: Separator-based pruned dynamic programming for steiner tree. In: AAAI, pp. 1520–1527 (2019)

    Google Scholar 

  14. Izadi, M.R., Fang, Y., Stevenson, R., Lin, L.: Optimization of graph neural networks with natural gradient descent. arXiv preprint arXiv:2008.09624 (2020)

  15. Izadi, M.R., Fang, Y., Stevenson, R., Lin, L.: Optimization of graph neural networks with natural gradient descent. CoRR abs/2008.09624 (2020)

    Google Scholar 

  16. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning for robust graph neural networks. In: SIGKDD, pp. 66–74. ACM (2020)

    Google Scholar 

  17. Kim, D., Oh, A.: Efficient representation learning of subgraphs by subgraph-to-node translation. CoRR abs/2204.04510 (2022)

    Google Scholar 

  18. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 2-es (2007)

    Google Scholar 

  19. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: SIGKDD, pp. 1105–1114 (2016)

    Google Scholar 

  20. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  21. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  22. Sun, S., Luo, Q.: In-memory subgraph matching: an in-depth study. In: SIGMOD, pp. 1083–1098. ACM (2020)

    Google Scholar 

  23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  24. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR, OpenReview.net (2018)

    Google Scholar 

  25. Wang, C., Liu, Z.: Graph representation learning by ensemble aggregating subgraphs via mutual information maximization. CoRR abs/2103.13125 (2021)

    Google Scholar 

  26. Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., Lin, X.: Reinforcement learning based query vertex ordering model for subgraph matching, pp. 245–258 (2022)

    Google Scholar 

  27. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2018)

    Google Scholar 

  28. Yin, Y., Wei, Z.: Scalable graph embeddings via sparse transpose proximities. In: SIGKDD, pp. 1429–1437 (2019)

    Google Scholar 

  29. Zhang, J.: Segmented graph-BERT for graph instance modeling. arXiv preprint arXiv:2002.03283 (2020)

  30. Zhang, J., Meng, L.: Gresnet: graph residual network for reviving deep gnns from suspended animation. CoRR abs/1909.05729 (2019)

    Google Scholar 

  31. Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-order proximity preserved network embedding. In: SIGKDD, pp. 2778–2786 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 61902074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, B., Zheng, W. (2023). Subgraph Reconstruction via Reversible Subgraph Embedding. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13945. Springer, Cham. https://doi.org/10.1007/978-3-031-30675-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30675-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30674-7

  • Online ISBN: 978-3-031-30675-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics