Skip to main content

On Waiting Time Maxima in Queues with Exponential-Pareto Service Times

  • Conference paper
  • First Online:
Distributed Computer and Communication Networks (DCCN 2022)

Abstract

In this paper we study the extreme behavior of waiting time in steady-state GI/G/1 systems with Exponential-Pareto service times. We show that this distribution belongs to the subclass of subexponential distributions, that allows to apply known tail asymptotic for stationary waiting times via the equilibrium distribution of service times. We propose the expressions for the normalizing constants and derive the limiting distribution of waiting time maxima (Frechet-type distribution). Simulation results show that approximation by Frechet-type distribution works well for GI/G/2 systems as well.

The publication has been prepared with the support of Russian Science Foundation according to the research project No. 21-71-10135, https://rscf.ru/en/project/21-71-10135/..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.J., Feldman, R.E., Taqqu, M.S. (eds.): A Practical Guide to Heavy Tails: Statistical Techniques and Applications. Birkhauser Boston Inc., USA (1998). https://dl.acm.org/doi/book/10.5555/292595#sec-terms

  2. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97236

    Book  MATH  Google Scholar 

  3. Asmussen, S., Klüppelberg, C., Sigman, K.: Sampling at subexponential times, with queueing applications. Stochast. Process. Appl. 79(2), 265–286 (1999). https://doi.org/10.1016/S0304-4149(98)00064-7. https://www.sciencedirect.com/science/article/pii/S0304414998000647

  4. Berger, A.W., Whitt, W.: Maximum values in queueing processes. Probab. Eng. Inf. Sci. 9, 375–409 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, J.H., Pei, Y., Sigman, K.: Exact sampling for some multi-dimensional queueing models with renewal input. Adv. Appl. Probab. 51, 1179–1208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, J.W.: Extreme value distributions for the \(M/G/1\) and \(GI/M/1\) queueing systems. Ann. Inst. H. Poincare Sect B(4), 83–98 (1968)

    Google Scholar 

  7. Embrechts, P., Klüüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Applications of Mathematics. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-33483-2

  8. Foss, S., Korshunov, D.: On large delays in multi-server queues with heavy tails. Math. Oper. Res. 37(2), 201–218 (2012). https://doi.org/10.1287/moor.1120.0539

  9. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-34471-3

    Book  MATH  Google Scholar 

  10. Hooghiemstra, G., Meester, L.E.: Computing the extremal index of special Markov chains and queues. Stochast. Process. Appl. 2(65), 171–185 (1996). https://doi.org/10.1016/S0304-4149(96)00111-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Iglehart, D.: Extreme values in GI/G/1 queue. Ann. Math. Statist. 43(2), 627–635 (1972). https://doi.org/10.1214/aoms/1177692642

    Article  MathSciNet  MATH  Google Scholar 

  12. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5449-2

    Book  MATH  Google Scholar 

  13. Markovich, N., Razumchik, R.: Cluster modeling of Lindley process with application to queuing. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 330–341. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36614-8_25

    Chapter  Google Scholar 

  14. Morozov, E.V., Pagano, M., Peshkova, I., Rumyantsev, A.S.: Sensitivity analysis and simulation of a multiserver queueing system with mixed service time distribution. Mathematics (2020)

    Google Scholar 

  15. Morozova, E., Panov, V.: Extreme value analysis for mixture models with heavy-tailed impurity. Mathematics 9(18) (2021). https://doi.org/10.3390/math9182208. https://www.mdpi.com/2227-7390/9/18/2208

  16. Peshkova, I., Morozov, E., Maltseva, M.: On comparison of multiserver systems with exponential-pareto mixture distribution. In: Gaj, P., Gumiński, W., Kwiecień, A. (eds.) CN 2020. CCIS, vol. 1231, pp. 141–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50719-0_11

    Chapter  Google Scholar 

  17. Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering (2008). https://doi.org/10.1007/978-0-387-75953-1

  18. Rodionov, I.: On threshold selection problem for extremal index estimation. In: Shiryaev, A.N., Samouylov, K.E., Kozyrev, D.V. (eds.) ICSM-5 2020. SPMS, vol. 371, pp. 3–16. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83266-7_1

    Chapter  Google Scholar 

  19. Rootzen, H.: Maxima and exceedances of stationary Markov chains. Adv. Appl. Probab. 20(2), 371–390 (1988). https://doi.org/10.2307/1427395

    Article  MathSciNet  MATH  Google Scholar 

  20. Smith, L., Weissman, I.: Estimating the extremal index. J. R. Stat. Soc. Ser. B: Methodol. 56(3), 515–528 (1994). https://doi.org/10.1111/J.2517-6161.1994.TB01997.X

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, R.: The extremal index for a Markov chain. J. Appl. Probab. 29(1), 37–45 (1992). https://doi.org/10.2307/3214789

    Article  MathSciNet  MATH  Google Scholar 

  22. Weissman, I., Novak, S.: On blocks and runs estimators of extremal index. J. Stat. Plan. Inference 66(2), 281–288 (1998). https://doi.org/10.1016/S0378-3758(97)00095-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Peshkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peshkova, I., Golovin, A., Maltseva, M. (2023). On Waiting Time Maxima in Queues with Exponential-Pareto Service Times. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks. DCCN 2022. Communications in Computer and Information Science, vol 1748. Springer, Cham. https://doi.org/10.1007/978-3-031-30648-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30648-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30647-1

  • Online ISBN: 978-3-031-30648-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics