Skip to main content

Tensile Strength of Wood Modified Polymer Composition with Carbon Nanotube Filler

  • Conference paper
  • First Online:
Proceedings of MPCPE 2022 (MPCPE 2022)

Abstract

For the rational use of wood in the manufacture of new types of wooden structures, strengthening of nodes and interfaces, it is currently advisable to use new materials and technical solutions using polymer compositions. Of the greatest interest are structural elements and manufacturing technologies of wooden structures using modern composite polymer materials with the inclusion of carbon nanotubes (CNTs) in their composition, which leads to increased strength and rigidity, reduced material consumption and mounting weight of structures, reduces the effect of anisotropy of properties and defects of wood on the bearing capacity.

Modification is carried out using a polymer composition based on dimethacrylic polyester with a nanostructured filler. In order to establish the mechanical properties of wood, experimental tests were carried out with a polymer composition without filler and with a nanostructured filler. The increase in strength properties during the modification of wood was 23.55%, and with the addition of carbon nanotubes—37.15%. Experimental studies have proved the promising possibility of using a polymer composition to modify wood in order to increase its strength properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roschina, S.I., Lukina, A. V., Sergeev, M.S., Vlasov, A. V., Gribanov, A.S.: Restoration of wooden constructions by impregnation of polymer composition on the example of industrial buildings of light and textile industry. Izv. Vyss. Uchebnykh Zaved. Seriya Teknol. Tekst. Promyshlennosti. (2016)

    Google Scholar 

  2. Roschina, S.I., Lisyatnikov, M.S., Koshcheev, A.A.: Technical- and- economic efficiency of reinforced wooden structures. IOP Conf. Ser. Mater. Sci. Eng. 698, 022005 (2019). https://doi.org/10.1088/1757-899X/698/2/022005

    Article  Google Scholar 

  3. Lukin, M., Prusov, E., Roshchina, S., Karelina, M., Vatin, N.: Multi-span composite timber beams with rational steel reinforcements. Buildings (2021). https://doi.org/10.3390/buildings11020046

    Article  Google Scholar 

  4. Sergeev, M.S., Gribanov, A.S., Roschina, S.I.: The stress strain state of composite multi-span beams. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/753/3/032068

  5. Lisyatnikov, M., Lukina, A., Chibrikin, D., Labudin, B.: The strength of wood-reinforced polymer composites in tension at an angle to the fibers. Lecture Notes in Civil Engineering, vol. 182, pp. 523–533 (2022). https://doi.org/10.1007/978-3-030-85236-8_46

  6. Wang, H., Zhao, Y.: Studies on pre-treatment by compression for wood impregnation III: effects of the solid content of low-molecular-weight phenol formaldehyde resin on the impregnation. J. Wood Sci. 68 (2022). https://doi.org/10.1186/s10086-022-02034-5

  7. Feng, X., Chen, J., Yu, S., Wu, Z., Huang, Q.: Mild hydrothermal modification of beech wood (Zelkova schneideriana Hand-Mzt): its physical, structural, and mechanical properties. Eur. J. Wood Wood Prod. (2022). https://doi.org/10.1007/s00107-022-01805-7

    Article  Google Scholar 

  8. Gao, Y., Li, Y., Ren, R., Li, L., Gao, J., Chen, Y.: Enhancing the mechanical properties and hydrophobicity of heat-treated wood by migrating and relocating sulfonated lignin. Holzforschung (2022). https://doi.org/10.1515/hf-2021-0207

    Article  Google Scholar 

  9. Gribanov, A.S., Rimshin, V.I., Roshchina, S.I.: Experimental investigations of composite wooden beams with local wood modification. In: IOP Conference Series: Materials Science and Engineering (2019). https://doi.org/10.1088/1757-899X/687/3/033039

  10. Novák, I., Sedliačik, J., Kleinová, A., Janigová, I., Mičušík, M., Bekhta, P., Šlouf, M., Matyašovský, J., Jurkovič, P.: The effect of thermal treatment with saturated water steam on the properties of birch wood. Acta Fac. Xylologiae Zvolen. 64, 5–14 (2022). https://doi.org/10.17423/afx.2022.64.1.01

  11. Wu, Y., Cai, Y., Yang, F., Gan, J., Zhang, J.: Chemical modification of poplar wood featuring compressible rebound 3D structure as water treatment absorbents. J. Clean. Prod. 331 (2022). https://doi.org/10.1016/j.jclepro.2021.129952

  12. Ermeydan, M.A., Cambazoğlu, M.D., Tomak, E.: A methodological approach to ε-caprolactone modification of wood. J. Wood Chem. Technol. (2022). https://doi.org/10.1080/02773813.2022.2085747

  13. Chabert, A.J., Fredon, E., Rémond, R.: Improving the stability of beech wood with polyester treatment based on malic acid. Holzforschung 76, 268–275 (2022). https://doi.org/10.1515/hf-2021-0030

    Article  Google Scholar 

  14. Julian, T.C., Fukuda, H., Novianto, D.: The influence of high-temperature and -pressure treatment on physical properties of Albizia falcataria board. Forests 13 (2022). https://doi.org/10.3390/f13020239

  15. Sargent, R.: Evaluating dimensional stability in modified wood: an experimental comparison of test methods. Forests 13 (2022). https://doi.org/10.3390/f13040613

  16. Du, H., Lü, W., Liu, Q., Kong, J., Wang, X.: Properties and mechanism of poplar wood modified by melamine-urea-glucose (MUG) biomass resin and sodium silicate compound | 三聚氰胺-尿素-葡萄糖(MUG)生物质树脂/硅酸钠复合改性杨木的性能与机理研究. Beijing Linye Daxue Xuebao/Journal Beijing For. Univ. 44, 124–131 (2022). https://doi.org/10.12171/j.1000-1522.20210535

  17. Younesi-Kordkheili, H., Pizzi, A.: Preparation and properties of a modified corn flour-lignin-glyoxal as a Green wood adhesive. Int. Wood Prod. J. 13, 119–126 (2022). https://doi.org/10.1080/20426445.2022.2048338

    Article  Google Scholar 

  18. de Oliveira Lopes, J., Cáceres, C.B., Hernández, R.E., Garcia, R.A.: Effect of the thermal treatment on the chemical components, sorption, and shrinkage properties of tectona grandis juvenile wood. Maderas Cienc. y Tecnol. 24, 1–16 (2022). https://doi.org/10.4067/S0718-221X2022000100418

    Article  Google Scholar 

  19. Wang, X., Wang, M., Cao, J.: Dimensional stability of Scots pine modified by in-situ polymerization esterification | 原位聚合酯化改性欧洲赤松的尺寸稳定性. Beijing Linye Daxue Xuebao/Journal Beijing For. Univ. 44, 129–139 (2022). https://doi.org/10.12171/j.1000-1522.20210271

  20. Roschina, S.I., Lisyatnikov, M.S., Lukin, M.V., Popova, M.V.: Technology of strengthening the supporting zones of the glued-wood beaming structure with the application of nanomodified prepregs. Mater. Sci. Forum. 931, 226–231 (2018). https://doi.org/10.4028/www.scientific.net/MSF.931.226

    Article  Google Scholar 

  21. Roshchina, S., Lukin, M., Lisyatnikov, M.: Compressed-bent reinforced wooden elements with long-term load. In: Lecture Notes in Civil Engineering (2020). https://doi.org/10.1007/978-3-030-42351-3_7

  22. Lisyatnikov, M.S., Roshchina, S.I., Chukhlanov, V.Y.: The use of cenospheres for the production of spheroplastics with high dielectric characteristics, obtained from ash of thermal power plant operating on solid fuel. In: IOP Conference Series: Earth and Environmental Science (2020). https://doi.org/10.1088/1755-1315/421/7/072005

  23. Yang, H., et al.: Preparation and properties of modified poplar impregnated with PVA-nano silica sol composite dispersion system. J. Wood Chem. Technol. (2022). https://doi.org/10.1080/02773813.2022.2064875

    Article  Google Scholar 

  24. Gribanov, A.S., Roshchina, S.I., Popova, M. V., Sergeev, M.S.: Laminar polymer composites for wooden structures. Mag. Civ. Eng. (2018). https://doi.org/10.18720/MCE.83.1

  25. Yasniy, P., Homon, S., Iasnii, V., Gomon, S.S., Gomon, P., Savitskiy, V.: Strength properties of chemically modified solid woods. In: Procedia Structural Integrity, pp. 211–216 (2022). https://doi.org/10.1016/j.prostr.2022.01.026

  26. Zhou, K., Luo, L., Na, B.: Study on flame retardant leach resistant of modified poplar wood. Wood Res. 67, 268–279 (2022). https://doi.org/10.37763/wr.1336-4561/67.2.268279

  27. De Angelis, M., Humar, M., Kržišnik, D., Tamantini, S., Romagnoli, M.: Influence of thermal modification and impregnation with biocides on physical properties of italian stone pine wood (Pinus pinea L.). Appl. Sci. 12 (2022). https://doi.org/10.3390/app12083801

  28. De Ligne, L., De Muynck, A., Caes, J., Baetens, J.M., De Baets, B., Van Hoorebeke, L., Van Acker, J., Van Den Bulcke, J.: Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung 76, 408–420 (2022). https://doi.org/10.1515/hf-2021-0167

    Article  Google Scholar 

  29. He, Z., et al.: Mechanical properties and dimensional stability of poplar wood modified by pre-compression and post-vacuum-thermo treatments. Polymers 14 (2022). https://doi.org/10.3390/polym14081571

  30. Thang, N.H., Huyen, N.T.B.: Fabrication of transparent composites from pinaceae wood packaging residues. Period. Polytech. Chem. Eng. 66, 135–146 (2022). https://doi.org/10.3311/PPch.18011

    Article  Google Scholar 

  31. Shi, J., Chen, H., Ye, J., Zhang, Y., Wu, Z., Zhan, X.: Properties of poplar veneer and plywood modified by in-situ synthesis of CaC0<inf>3</inf> | 碳酸钙原位合成改性杨木单板及胶合板性能研究. J. For. Eng. 7, 43–51 (2022). https://doi.org/10.13360/j.issn.2096-1359.202107002

  32. Möttönen, V., Helama, S., Pranovich, A., Korotkova, E., Xu, C., Herva, H., Heräjärvi, H., Mäkinen, H., Nöjd, P., Jyske, T.: Subfossil scots pine (Pinus sylvestris L.) Wood from Northern Finland—physical, mechanical, and chemical properties and suitability for specialty products. Forests 13 (2022). https://doi.org/10.3390/f13050704

  33. Xu, Y., Zhang, X., Liu, Z., Zhang, X., Luo, J., Li, J., Shi, S.Q., Li, J., Gao, Q.: Constructing SiO<inf>2</inf> nanohybrid to develop a strong soy protein adhesive with excellent flame-retardant and coating ability. Chem. Eng. J. 446 (2022). https://doi.org/10.1016/j.cej.2022.137065

  34. Sergeev, M., Rimshin, V., Lukin, M., Zdralovic, N.: Multi-span composite beam. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/896/1/012058

  35. Lukin, M. V., Roshchina, S.I., Smirnov, E.A., Shunqi, M.: Strengthening of the operated wooden floor beams with external rigid reinforcement. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/896/1/012065

  36. Merkulov, S., Rimshin, V., Akimov, E., Kurbatov, V., Roschina, S.: Regulatory support for the use of composite rod reinforcement in concrete structures. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/896/1/012022

  37. Roschina, S.I., Lisyatnikov, M.S., Melekhov, V.I., Labudin, B.V., Lukin, M.V.: Application of high glued wooden beams in the ceiling of buildings textile plants. Izv. Vyss. Uchebnykh Zaved. Seriya Teknol. Tekst. Promyshlennosti. (2016)

    Google Scholar 

  38. Lukina, A., Roshchina, S., Gribanov, A.: Method for restoring destructed wooden structures with polymer composites. Presented at the (2021). https://doi.org/10.1007/978-3-030-72404-7_45

Download references

Acknowledgements

The research was carried out at the expense of the grant of the Russian Science Foundation No. 22-29-01637, https://rscf.ru/project/22-29-01637/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Lukin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukin, M., Glebova, T., Naichuk, A. (2024). Tensile Strength of Wood Modified Polymer Composition with Carbon Nanotube Filler. In: Vatin, N., Roshchina, S., Serdjuks, D. (eds) Proceedings of MPCPE 2022. MPCPE 2022. Lecture Notes in Civil Engineering, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-031-30570-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30570-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30569-6

  • Online ISBN: 978-3-031-30570-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics