Skip to main content

Weighted Oblivious RAM, with Applications to Searchable Symmetric Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14004))

Abstract

Existing Oblivious RAM protocols do not support the storage of data items of variable size in a non-trivial way. While the study of ORAM for items of variable size is of interest in and of itself, it is also motivated by the need for more performant and more secure Searchable Symmetric Encryption (SSE) schemes.

In this article, we introduce the notion of weighted ORAM, which supports the storage of blocks of different sizes. We introduce a framework to build efficient weighted ORAM schemes, based on an underlying standard ORAM satisfying a certain suitability criterion. This criterion is fulfilled by various Tree ORAM schemes, including Simple ORAM and Path ORAM. We deduce several instantiations of weighted ORAM, with very little overhead compared to standard ORAM. As a direct application, we obtain efficient SSE constructions with attractive security properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader may observe that items of size 0 are not technically legal per the earlier definition of wORAM, which asks that items are of size at least 1; however, \({{\,\mathrm{\texttt {TransVar}}\,}}(\textsf{ORAM})\) remains well-defined even for items of size 0, so nothing stops us from using them within the proof—the reason we forbade items of size 0 is that they would allow for an unbounded number of items, which would require a position map of unbounded size, but this is irrelevant for the current line of reasoning.

References

  1. Asharov, G., Komargodski, I., Lin, W.K., Nayak, K., Peserico, E., Shi, E.: OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 403–432. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45724-2_14

  2. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1101–1114. ACM Press (2016). https://doi.org/10.1145/2897518.2897562

  3. Berenbrink, P., Friedetzky, T., Hu, Z., Martin, R.: On weighted balls-into-bins games. Theoret. Comput. Sci. 409(3), 511–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bossuat, A., Bost, R., Fouque, P.A., Minaud, B., Reichle, M.: SSE and SSD: page-efficient searchable symmetric encryption. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 157–184. Springer, Heidelberg, Virtual Event, August 2021. https://doi.org/10.1007/978-3-030-84252-9_6

  5. Bost, R.: \(\Sigma o \phi o \varsigma \): Forward secure searchable encryption. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1143–1154. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978303

  6. Bost, R., Fouque, P.A.: Security-efficiency tradeoffs in searchable encryption. PoPETs 2019(4), 132–151 (2019). https://doi.org/10.2478/popets-2019-0062

    Article  Google Scholar 

  7. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 668–679. ACM Press, October 2015. https://doi.org/10.1145/2810103.2813700

  8. Chan, T.H.H., Chung, K.M., Shi, E.: On the depth of oblivious parallel RAM. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 567–597. Springer, Heidelberg, December 2017. https://doi.org/10.1007/978-3-319-70694-8_20

  9. Chung, K.M., Pass, R.: A simple ORAM. Cryptology ePrint Archive, Report 2013/243 (2013). https://eprint.iacr.org/2013/243

  10. Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T.: Peek-a-boo, i still see you: why efficient traffic analysis countermeasures fail. In: 2012 IEEE Symposium on Security and Privacy, pp. 332–346. IEEE Computer Society Press, May 2012. https://doi.org/10.1109/SP.2012.28

  11. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg, August 2016. https://doi.org/10.1007/978-3-662-53015-3_20

  12. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.233553

  13. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Pump up the volume: practical database reconstruction from volume leakage on range queries. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 315–331. ACM Press, October 2018. https://doi.org/10.1145/3243734.3243864

  14. Grubbs, P., Lacharité, M.S., Minaud, B., Paterson, K.G.: Learning to reconstruct: statistical learning theory and encrypted database attacks. In: 2019 IEEE Symposium on Security and Privacy, pp. 1067–1083. IEEE Computer Society Press, May 2019. https://doi.org/10.1109/SP.2019.00030

  15. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-abuse attacks against order-revealing encryption. In: 2017 IEEE Symposium on Security and Privacy, pp. 655–672. IEEE Computer Society Press, May 2017. https://doi.org/10.1109/SP.2017.44

  16. Halevi, S., Kushilevitz, E.: Random-index oblivious ram. Cryptology ePrint Archive, Paper 2022/982 (2022). https://eprint.iacr.org/2022/982

  17. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 183–213. Springer, Heidelberg, May 2019. https://doi.org/10.1007/978-3-030-17656-3_7

  18. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage suppression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 339–370. Springer, Heidelberg, August 2018. https://doi.org/10.1007/978-3-319-96884-1_12

  19. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 523–542. Springer, Heidelberg, August 2018. https://doi.org/10.1007/978-3-319-96881-0_18

  20. Liu, Z., Huang, Y., Li, J., Cheng, X., Shen, C.: DivORAM: towards a practical oblivious RAM with variable block size. Inf. Sci. 447, 1–11 (2018). https://doi.org/10.1016/j.ins.2018.02.071, https://www.sciencedirect.com/science/article/pii/S0020025518301427

  21. Maas, M., et al.: PHANTOM: practical oblivious computation in a secure processor. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 311–324. ACM Press, November 2013. https://doi.org/10.1145/2508859.2516692

  22. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications, vol. 143. Springer, New York (2010). https://doi.org/10.1007/978-0-387-68276-1

  23. Miers, I., Mohassel, P.: IO-DSSE: scaling dynamic searchable encryption to millions of indexes by improving locality. In: NDSS 2017. The Internet Society, February/March 2017

    Google Scholar 

  24. Minaud, B., Reichle, M.: Dynamic local searchable symmetric encryption. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol. 13510. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_4

  25. Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-hosted data structures: volume-hiding for multi-maps via hashing. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 79–93. ACM Press, November 2019. https://doi.org/10.1145/3319535.3354213

  26. Roche, D.S., Aviv, A.J., Choi, S.G.: A practical oblivious map data structure with secure deletion and history independence. In: 2016 IEEE Symposium on Security and Privacy, pp. 178–197. IEEE Computer Society Press, May 2016. https://doi.org/10.1109/SP.2016.19

  27. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 299–310. ACM Press, November 2013. https://doi.org/10.1145/2508859.2516660

  28. Talwar, K., Wieder, U.: Balanced allocations: the weighted case. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 256–265. ACM Press, June 2007. https://doi.org/10.1145/1250790.1250829

  29. Talwar, K., Wieder, U.: Balanced allocations: the weighted case. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 256–265 (2007)

    Google Scholar 

  30. Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-Ostrovsky lower bound. Cryptology ePrint Archive, Report 2014/672 (2014). https://ia.cr/2014/672

  31. Wang, X.S., et al.: Oblivious data structures. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 215–226. ACM Press (November 2014). https://doi.org/10.1145/2660267.2660314

  32. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization environments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314–328. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_23

Download references

Acknowledgments

This work was supported by the ANR project SaFED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léonard Assouline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Assouline, L., Minaud, B. (2023). Weighted Oblivious RAM, with Applications to Searchable Symmetric Encryption. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14004. Springer, Cham. https://doi.org/10.1007/978-3-031-30545-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30545-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30544-3

  • Online ISBN: 978-3-031-30545-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics