Skip to main content

How Vulnerable is an Undirected Planar Graph with Respect to Max Flow

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2023)

Abstract

We study the problem of computing the vitality of edges and vertices with respect to the st-max flow in undirected planar graphs, where the vitality of an edge/vertex is the st-max flow decrease when the edge/vertex is removed from the graph. This allows us to establish the vulnerability of the graph with respect to the st-max flow.

We give efficient algorithms to compute an additive guaranteed approximation of the vitality of edges and vertices in planar undirected graphs. We show that in the general case high vitality values are well approximated in time close to the time currently required to compute st-max flow \(O(n\log \log n)\). We also give improved, and sometimes optimal, results in the case of integer capacities. All our algorithms work in O(n) space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows (1988)

    Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.: Applications of network optimization. In: Handbooks in Operations Research and Management Science, vol. 7, pp. 1–83 (1995)

    Google Scholar 

  3. Alderson, D.L., Brown, G.G., Carlyle, W.M., Cox, L.A., Jr.: Sometimes there is no “most-vital’’ arc: assessing and improving the operational resilience of systems. Mil. Oper. Res. 18, 21–37 (2013)

    Article  Google Scholar 

  4. Altner, D.S., Ergun, Ö., Uhan, N.A.: The maximum flow network interdiction problem: valid inequalities, integrality gaps, and approximability. Oper. Res. Lett. 38, 33–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ausiello, G., Franciosa, P.G., Lari, I., Ribichini, A.: Max flow vitality in general and st-planar graphs. Networks 74, 70–78 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ausiello, G., Franciosa, P.G., Lari, I., Ribichini, A.: Max-flow vitality in undirected unweighted planar graphs. CoRR, abs/2011.02375 (2020)

    Google Scholar 

  7. Balzotti, L., Franciosa, P.G.: Computing lengths of non-crossing shortest paths in planar graphs. CoRR, abs/2011.04047 (2020)

    Google Scholar 

  8. Balzotti, L., Franciosa, P.G.: Max flow vitality of edges and vertices in undirected planar graphs. CoRR, abs/2201.13099 (2022)

    Google Scholar 

  9. Balzotti, L., Franciosa, P.G.: Non-crossing shortest paths in undirected unweighted planar graphs in linear time. J. Graph Algorithms Appl. 26, 589–606 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balzotti, L., Franciosa, P.G.: Non-crossing shortest paths in undirected unweighted planar graphs in linear time. In: Kulikov, A.S., Raskhodnikova, S. (eds.) CSR 2022. LNCS, vol. 13296, pp. 77–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09574-0_6

    Chapter  Google Scholar 

  11. Balzotti, L., Franciosa, P.G.: Non-crossing shortest paths lengths in planar graphs in linear time. In: Mavronicolas, M. (ed.) CIAC 2023. LNCS, pp. xx–yy. Springer, Cham (2023)

    Google Scholar 

  12. Borradaile, G., Klein, P.N.: An \({O}(n \log n)\) algorithm for maximum st-flow in a directed planar graph. J. ACM 56, 9:1–9:30 (2009)

    Google Scholar 

  13. Eisenstat, D., Klein, P.N.: Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 735–744. ACM (2013)

    Google Scholar 

  14. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30, 209–221 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hassin, R.: Maximum flow in (s, t) planar networks. Inf. Process. Lett. 13, 107 (1981)

    Article  MathSciNet  Google Scholar 

  17. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 3–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Itai, A., Shiloach, Y.: Maximum flow in planar networks. SIAM J. Comput. 8, 135–150 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms for min cut and max flow in undirected planar graphs. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 313–322. ACM (2011)

    Google Scholar 

  20. King, V., Rao, S., Tarjan, R.E.: A faster deterministic maximum flow algorithm. J. Algorithms 17, 447–474 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_3

    Chapter  Google Scholar 

  22. Kowalik, L., Kurowski, M.: Short path queries in planar graphs in constant time. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 143–148. ACM (2003)

    Google Scholar 

  23. Łącki, J., Sankowski, P.: Min-cuts and shortest cycles in planar graphs in \({O}({n} \log \log {n})\) time. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 155–166. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_14

    Chapter  Google Scholar 

  24. Mattsson, L.-G., Jenelius, E.: Vulnerability and resilience of transport systems–a discussion of recent research. Transp. Res. Part A: Policy Pract. 81, 16–34 (2015)

    Google Scholar 

  25. Murray, A.T.: An overview of network vulnerability modeling approaches. GeoJournal 78, 209–221 (2013)

    Article  Google Scholar 

  26. Orlin, J.B.: Max flows in \({O}(nm)\) time, or better. In: Symposium on Theory of Computing Conference, STOC 2013, pp. 765–774. ACM (2013)

    Google Scholar 

  27. Phillips, C.A.: The network inhibition problem. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 776–785. ACM (1993)

    Google Scholar 

  28. Ratliff, H.D., Sicilia, G.T., Lubore, S.: Finding the n most vital links in flow networks. Manag. Sci. 21, 531–539 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reif, J.H.: Minimum s-t cut of a planar undirected network in \({O}(n\log ^2(n))\) time. SIAM J. Comput. 12, 71–81 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wollmer, R.D.: Some Methods for Determining the Most Vital Link in a Railway Network. Rand Corporation (1963)

    Google Scholar 

  31. Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17, 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Balzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balzotti, L., Franciosa, P.G. (2023). How Vulnerable is an Undirected Planar Graph with Respect to Max Flow. In: Mavronicolas, M. (eds) Algorithms and Complexity. CIAC 2023. Lecture Notes in Computer Science, vol 13898. Springer, Cham. https://doi.org/10.1007/978-3-031-30448-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30448-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30447-7

  • Online ISBN: 978-3-031-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics