Skip to main content

Weighted Temporal Event Graphs and Temporal-Network Connectivity

  • Chapter
  • First Online:
Temporal Network Theory

Abstract

Correlations between the times of events in a temporal network carry information on the function of the network and constrain how dynamical processes taking place on the network can unfold. Various techniques for extracting information from correlated event times have been developed, from the analysis of time-respecting paths to temporal motif statistics. In this chapter, we discuss a recently-introduced, general framework that maps the connectivity structure contained in a temporal network’s event sequence onto static, weighted graphs. This mapping retains all information on time-respecting paths and the time differences between their events. The weighted temporal event graph framework builds on directed, acyclic graphs (DAGs) that contain a superposition of all temporal paths of the network. We introduce the reader to the mapping from temporal networks onto DAGs and the associated computational methods and illustrate the power of this framework by applying it to temporal motifs and to temporal-network percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. Aledavood, E. López, S.G.B. Roberts, F. Reed-Tsochas, E. Moro, R.I.M. Dunbar, J. Saramäki, Daily rhythms in mobile telephone communication. PLoS One 10, e0138098 (2015)

    Article  Google Scholar 

  • V.-P. Backlund, J. Saramäki, R.K. Pan, Effects of temporal correlations on cascades: threshold models on temporal networks. Phys. Rev. E 89, 062815 (2014)

    Article  ADS  Google Scholar 

  • A. Badie-Modiri, M. Karsai, M. Kivelä, Efficient limited-time reachability estimation in temporal networks. Phys. Rev. E 101, 052303 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Badie-Modiri, A.K. Rizi, M. Karsai, M. Kivelä, Directed percolation in temporal networks. Phys. Rev. X 4, L022047 (2022)

    Google Scholar 

  • A. Badie-Modiri, A.K. Rizi, M. Karsai, M. Kivelä, Directed percolation in random temporal network models with heterogeneities. Phys. Rev. E 105, 054313 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Bureau of Transportation Statistics (2017). www.bts.gov

  • H. Hinrichsen, Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  • P. Holme, Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234 (2015)

    Article  ADS  Google Scholar 

  • P. Holme, J. Saramäki, Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  • D.X. Horváth, J. Kertész, Spreading dynamics on networks: the role of burstiness, topology and non-stationarity. New J. Phys. 16, 073037 (2014)

    Article  ADS  Google Scholar 

  • J.L. Iribarren, E. Moro, Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  • H.-H. Jo, M. Karsai, J. Kertész, K. Kaski, Circadian pattern and burstiness in human communication activity. New J. Phys. 14, 013055 (2012)

    Article  ADS  Google Scholar 

  • T. Junttila, P. Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in Proceedings of ALENEX 2007, ed. by D. Applegate, G.S. Brodal, D. Panario, R. Sedgewick (SIAM, 2007), p. 135

    Google Scholar 

  • F. Karimi, P. Holme, Threshold model of cascades in temporal networks. Phys. A 392, 3476 (2013)

    Article  Google Scholar 

  • M. Karsai, A. Noiret, A. Brovelli, Work in progress (2019)

    Google Scholar 

  • M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, J. Saramäki, Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  • M. Kivelä, J. Cambe, J. Saramäki, M. Karsai, Mapping temporal-network percolation to weighted, static event graphs. Sci. Rep. 8, 12357 (2018)

    Article  ADS  Google Scholar 

  • L. Kovanen, M. Karsai, K..Kaski, J. Kertész, J. Saramäki, Temporal motifs in time-dependent networks. J. Stat. Mech. Theor. Exp. 2011, P11005+ (2011)

    Google Scholar 

  • L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, Temporal motifs. In: Temporal Networks, ed. by P. Holme, J. Saramäki (Springer, Heidelberg, 2013), pp. 119–134

    Google Scholar 

  • L. Kovanen, K. Kaski, J. Kertész, J. Saramäki, Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. (USA) 110(45), 18070–18075 (2013)

    Article  ADS  Google Scholar 

  • P.L. Leath, Cluster size and boundary distribution near percolation threshold. Phys. Rev. B 14, 5046 (1976)

    Article  ADS  Google Scholar 

  • A. Mellor, The temporal event graph. J. Complex Netw. 6, 639–659 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Milo, Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  ADS  Google Scholar 

  • R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  ADS  Google Scholar 

  • G. Miritello, R. Lara, M. Cebrian, E. Moro, Limited communication capacity unveils strategies for human interaction. Sci. Rep. 3, 1950 (2013)

    Article  ADS  Google Scholar 

  • H. Navarro, G. Miritello, A. Canales, E. Moro, Temporal patterns behind the strength of persistent ties. EPJ Data Sci. 6, 31 (2017)

    Article  Google Scholar 

  • M.E.J. Newman, R.M. Ziff, Fast Monte Carlo algorithm for site or bond percolation. Phys. Rev. E 64, 016706 (2001)

    Article  ADS  Google Scholar 

  • V. Nicosia, M. Musolesi, G. Russo, C. Mascolo, V. Latora, Components in time-varying graphs. Chaos 22, 023101 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szábo, D. Lazer, K. Kaski, J. Kertész, A.-L. Barabási, Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104, 7332 (2007)

    Article  ADS  Google Scholar 

  • L.E. Rocha, F. Liljeros, P. Holme, Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comp. Biol. 7, e1001109 (2011)

    Article  ADS  Google Scholar 

  • T. Takaguchi, N. Masuda, P. Holme, Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics. PLoS One 8, e68629 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JS acknowledges funding from the Strategic Research Council at the Academy of Finland (NetResilience consortium, grant numbers 345188 and 345183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Saramäki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saramäki, J., Badie-Modiri, A., Rizi, A.K., Kivelä, M., Karsai, M. (2023). Weighted Temporal Event Graphs and Temporal-Network Connectivity. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-30399-9_6

Download citation

Publish with us

Policies and ethics