Skip to main content

Evolving Neural Networks for Robotic Arm Control

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

Developing effective and adaptive robotic arm controllers is crucial for many industries, e.g. manufacturing. Traditional pre-programmed controllers cannot adapt to changing environments. This study investigates how neuroevolution can be used to develop robotic arm controllers and addresses key gaps in the existing literature, such as incorporating expert demonstrations and analyzing the robustness of evolved controllers. In addition to addressing these questions, this work compares different controller architectures and training algorithms. The proposed evolutionary neural network motion controller can accurately complete the random target reaching task, moving to within 1.7 cm from the target on average. An evolutionary supervisor neural network approach is also proposed to solve the pick-and-place task. The proposed method achieves a high successful completion rate, 927 out of 1000 trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amarjyoti, S.: Deep reinforcement learning for robotic manipulation-the state of the art. arXiv preprint arXiv:1701.08878 (2017)

  2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  3. Baioletti, M., Di Bari, G., Poggioni, V., Tracolli, M.: Differential evolution for learning large neural networks (2018)

    Google Scholar 

  4. D’Silva, T., Miikkulainen, R.: Learning dynamic obstacle avoidance for a robot arm using neuroevolution. Neural Process. Lett. 30(1), 59–69 (2009)

    Article  Google Scholar 

  5. Espinal, A., et al.: Comparison of PSO and de for training neural networks. In: 2011 10th Mexican International Conference on Artificial Intelligence, pp. 83–87. IEEE (2011)

    Google Scholar 

  6. Grimaldi, E.A., Grimaccia, F., Mussetta, M., Zich, R.: PSO as an effective learning algorithm for neural network applications. In: Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004, pp. 557–560. IEEE (2004)

    Google Scholar 

  7. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396. IEEE (2017)

    Google Scholar 

  8. Gudise, V.G., Venayagamoorthy, G.K.: Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS 2003 (Cat. No. 03EX706), pp. 110–117. IEEE (2003)

    Google Scholar 

  9. Hansen, N.: Injecting external solutions into cma-es. arXiv preprint arXiv:1110.4181 (2011)

  10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  11. Huang, P.C., Lehman, J., Mok, A.K., Miikkulainen, R., Sentis, L.: Grasping novel objects with a dexterous robotic hand through neuroevolution. In: 2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA), pp. 1–8. IEEE (2014)

    Google Scholar 

  12. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. ACM Comput. Surv. (CSUR) 50(2), 1–35 (2017)

    Article  Google Scholar 

  13. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: The 2003 Congress on Evolutionary Computation, 2003. CEC 2003, vol. 4, pp. 2588–2595. IEEE (2003)

    Google Scholar 

  14. Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)

    Article  Google Scholar 

  15. James, S., Freese, M., Davison, A.J.: Pyrep: Bringing v-rep to deep robot learning. arXiv preprint arXiv:1906.11176 (2019)

  16. Karpov, I.V., Valsalam, V.K., Miikkulainen, R.: Human-assisted neuroevolution through shaping, advice and examples. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 371–378 (2011)

    Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  18. Mason, K., Duggan, J., Howley, E.: Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks. Energy 155, 705–720 (2018)

    Article  Google Scholar 

  19. Mason, K., Duggan, M., Barrett, E., Duggan, J., Howley, E.: Predicting host CPU utilization in the cloud using evolutionary neural networks. Futur. Gener. Comput. Syst. 86, 162–173 (2018)

    Article  Google Scholar 

  20. Mason, K., Grijalva, S.: Building HVAC control via neural networks and natural evolution strategies. In: 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 2483–2490. IEEE (2021)

    Google Scholar 

  21. Moriarty, D.E., Miikkulainen, R.: Evolving obstacle avoidance behavior in a robot arm. In: From animals to animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, vol. 4, p. 468. MIT Press (1996)

    Google Scholar 

  22. Rohmer, E., Singh, S.P., Freese, M.: V-rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326. IEEE (2013)

    Google Scholar 

  23. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017)

  24. Slowik, A., Bialko, M.: Training of artificial neural networks using differential evolution algorithm. In: 2008 Conference on Human System Interactions, pp. 60–65. IEEE (2008)

    Google Scholar 

  25. Spong, M.W., Hutchinson, S., Vidyasagar, M., et al.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  26. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)

  28. Wen, R., Guo, Z., Zhao, T., Ma, X., Wang, Q., Wu, Z.: Neuroevolution of augmenting topologies based musculor-skeletal arm neurocontroller. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. IEEE (2017)

    Google Scholar 

  29. Zhang, C., Shao, H., Li, Y.: Particle swarm optimisation for evolving artificial neural network. In: SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics’.Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’(cat. no. 0. vol. 4, pp. 2487–2490. IEEE (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horgan, A., Mason, K. (2023). Evolving Neural Networks for Robotic Arm Control. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics