Skip to main content

Low Dose CT Image Denoising Using Efficient Transformer with SimpleGate Mechanism

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13625))

Included in the following conference series:

Abstract

The widespread use of computed tomograph (CT) technology in clinic has caused more and more patients to worry that they will receive too much radiation during the scanning. The low-dose CT (LDCT) scanning is more likely to be accepted by the patients. But LDCT images can adversely affect doctors’ diagnosis, owing to low quality of the images. Therefore, it is necessary to improve the diagnostic performance by denoising LDCT images. During the past few decades, the convolutional neural networks (CNNs) and Transformer models that achieve remarkable performance in natural image denoising provide new avenues for LDCT denoising. Although the existing methods have successfully achieved noise reduction, there is still large room for improvement in the denoising level. In this paper, we refer to the implementation of natural images denoising, and proposed a transformer-based U-shape network model to achieve denoising in LDCT images. In each transformer block, we used the depth-wise convolution, transposed self-attention mechanism, and SimpleGate to improve performance and speed up efficiency. Extensive experiments on the AAPM-Mayo clinic LDCT Grand Challenge dataset indicated that the proposed model yielded a competitive performance to the compared baseline denoising methods. In particular, good evaluation was achieved in noise suppression, structure preservation and lesion highlighting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner, D.J., Hall, E.J.: Computed tomographyan increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

    Article  Google Scholar 

  2. Burger, H.C., Schuler, C., Harmeling, S.: Learning how to combine internal and external denoising methods. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 121–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_13

    Chapter  Google Scholar 

  3. Cao, X., Yang, J., Gao, Y., Wang, Q., Shen, D.: Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis. IEEE Trans. Image Process. 27(7), 3500–3512 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C.H., et al.: Computer-aided diagnosis of endobronchial ultrasound images using convolutional neural network. Comput. Methods Programs Biomed. 177, 175–182 (2019)

    Article  Google Scholar 

  5. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  6. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)

  7. Chen, Y., et al.: Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 58(16), 5803 (2013)

    Article  Google Scholar 

  8. De Man, B., Basu, S.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49(11), 2463 (2004)

    Article  Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Feruglio, P.F., Vinegoni, C., Gros, J., Sbarbati, A., Weissleder, R.: Block matching 3D random noise filtering for absorption optical projection tomography. Phys. Med. Biol. 55(18), 5401 (2010)

    Article  Google Scholar 

  11. Kang, D., et al.: Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: Medical Imaging 2013: Image Processing, vol. 8669, pp. 671–676. SPIE (2013)

    Google Scholar 

  12. Lewitt, R.M.: Multidimensional digital image representations using generalized Kaiser-Bessel window functions. JOSA A 7(10), 1834–1846 (1990)

    Article  Google Scholar 

  13. Liang, T., Jin, Y., Li, Y., Wang, T.: EDCNN: edge enhancement-based densely connected network with compound loss for low-dose CT denoising. In: 2020 15th IEEE International Conference on Signal Processing (ICSP), vol. 1, pp. 193–198. IEEE (2020)

    Google Scholar 

  14. Luthra, A., Sulakhe, H., Mittal, T., Iyer, A., Yadav, S.: Eformer: edge enhancement based transformer for medical image denoising. arXiv preprint arXiv:2109.08044 (2021)

  15. Ma, J., et al.: Low-dose computed tomography image restoration using previous normal-dose scan. Med. Phys. 38(10), 5713–5731 (2011)

    Article  Google Scholar 

  16. Mathews, J.P., Campbell, Q.P., Xu, H., Halleck, P.: A review of the application of X-ray computed tomography to the study of coal. Fuel 209, 10–24 (2017)

    Article  Google Scholar 

  17. McCollough, C.H., et al.: Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge. Med. Phys. 44(10), e339–e352 (2017)

    Article  Google Scholar 

  18. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Prob. 25(12), 123009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramani, S., Fessler, J.A.: A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction. IEEE Trans. Med. Imaging 31(3), 677–688 (2011)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Shan, H., et al.: Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat. Mach. Intell. 1(6), 269–276 (2019)

    Article  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  23. Wang, D., Fan, F., Wu, Z., Liu, R., Wang, F., Yu, H.: CTformer: convolution-free token2token dilated vision transformer for low-dose CT denoising. arXiv preprint arXiv:2202.13517 (2022)

  24. Wang, D., Wu, Z., Yu, H.: TED-Net: convolution-free T2T vision transformer-based encoder-decoder dilation network for low-dose CT denoising. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 416–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_43

    Chapter  Google Scholar 

  25. Whiting, B.R., Massoumzadeh, P., Earl, O.A., O’Sullivan, J.A., Snyder, D.L., Williamson, J.F.: Properties of preprocessed sinogram data in X-ray computed tomography. Med. Phys. 33(9), 3290–3303 (2006)

    Article  Google Scholar 

  26. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  27. Wu, G., Kim, M., Wang, Q., Munsell, B.C., Shen, D.: Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63(7), 1505–1516 (2015)

    Article  Google Scholar 

  28. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  29. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  30. Zhang, W., et al.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108, 214–224 (2015)

    Article  Google Scholar 

  31. Zhang, Y., et al.: Clear: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose CT imaging. IEEE Trans. Med. Imaging 40(11), 3089–3101 (2021)

    Article  Google Scholar 

  32. Zhang, Z., Yu, L., Liang, X., Zhao, W., Xing, L.: TransCT: dual-path transformer for low dose computed tomography. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 55–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangsong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, L., Qiu, W., Li, N., Li, Y., Zhang, Y. (2023). Low Dose CT Image Denoising Using Efficient Transformer with SimpleGate Mechanism. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13625. Springer, Cham. https://doi.org/10.1007/978-3-031-30111-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30111-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30110-0

  • Online ISBN: 978-3-031-30111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics