Skip to main content

The Role of Machine Learning in the Advancement of 6G Technology: Opportunities and Challenges

  • Chapter
  • First Online:
6G Enabled Fog Computing in IoT

Abstract

While the world is heading towards the 5G network-oriented revolution, the implicit limitations of 5G have garnered researchers’ attention. Smart IoE (Internet of Everything) services are expected to grow. 6G, with its ultra-broadband, low latency, the decentralized and intelligent network is envisioned as a possible solution even at its infancy stage. Mobile Edge computing integrated with the Internet of Things (IoT) has eased information flow but has also complicated it. AI modeling is imperative for a 6G wireless decentralized network to move to ‘connected intelligence’ rather than ‘connected things.’ Modeling, training, and decision-making on local devices would aid in the integration of network nodes. This paper presents the recent advancements in the 6G network along with the plausible limitations and challenges in massive data procurement from IoT devices over 6G. The present use cases of IoT, Artificial intelligence, and the prospective application areas of 6G are discussed and analyzed. Further, we also posit how Artificial intelligence can maneuver the processing overheads of data processing. This paper also presents the architectural nuances of 6G that would pave the path for a fast and robust network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurt, G. K., Khoshkholgh, M. G., Alfattani, S., Ibrahim, A., Darwish, T. S., Alam, M. S., et al. (2021). A vision and framework for the high altitude platform station (HAPS) networks of the future. IEEE Communications Surveys & Tutorials, 23(2), 729–779.

    Article  Google Scholar 

  2. Hossain, M. S., & Muhammad, G. (2017). Emotion-aware connected healthcare big data towards 5G. IEEE Internet of Things Journal, 5(4), 2399–2406.

    Article  Google Scholar 

  3. “5G: The future of IoT”. (2019). https://www.5gamericas.org/wp-content/uploads/2019/07/5G Americas White Paper on 5G IOT FINAL 7.16.pdf

  4. Koohang, A., Sargent, C. S., Nord, J. H., & Paliszkiewicz, J. (2022). Internet of Things (IoT): From awareness to continued use. International Journal of Information Management, 62, 102442.

    Article  Google Scholar 

  5. Kamruzzaman, M. M., Alrashdi, I., & Alqazzaz, A. (2022). New opportunities, challenges, and applications of edge-AI for connected healthcare in Internet of medical things for smart cities. Journal of Healthcare Engineering, 2022, 14. Article ID 2950699. https://doi.org/10.1155/2022/2950699

  6. Qi, Q., Chen, X., Zhong, C., & Zhang, Z. (2020). Integration of energy, computation and communication in 6G cellular internet of things. IEEE Communications Letters, 24(6), 1333–1337.

    Article  Google Scholar 

  7. Rout, D., Mishra, S. J., Ota, R., & Gupta, P. (2021). Customer satisfaction towards internet speed of various telecom service providers: An exploratory study in Bhubaneswar. International Journal of All Research Education and Scientific Methods (IJARESM), 9(3), 1463–1473.

    Google Scholar 

  8. Ahmad, I., Shahabuddin, S., Kumar, T., Okwuibe, J., Gurtov, A., & Ylianttila, M. (2019). Security for 5G and beyond. IEEE Communications Surveys & Tutorials, 21(4), 3682–3722.

    Google Scholar 

  9. Yang, R., Yu, F. R., Si, P., Yang, Z., & Zhang, Y. (2019). Integrated blockchain and edge computing systems: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 21(2), 1508–1532.

    Article  Google Scholar 

  10. Huang, T., Yang, W., Wu, J., Ma, J., Zhang, X., & Zhang, D. (2019). A survey on green 6G network: Architecture and technologies. IEEE Access, 7, 175758–175768.

    Article  Google Scholar 

  11. Akhtar, M. W., Hassan, S. A., Ghaffar, R., Jung, H., Garg, S., & Hossain, M. S. (2020). The shift to 6G communications: Vision and requirements. Human-centric Computing and Information Sciences, 10(1), 1–27.

    Article  Google Scholar 

  12. Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjöland, H., & Tufvesson, F. (2021). 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7), 1166–1199.

    Article  Google Scholar 

  13. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61.

    Article  Google Scholar 

  14. Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957–975.

    Article  Google Scholar 

  15. Yang, H., Alphones, A., Xiong, Z., Niyato, D., Zhao, J., & Wu, K. (2020). Artificial-intelligence-enabled intelligent 6G networks. IEEE Network, 34(6), 272–280.

    Article  Google Scholar 

  16. Mathew, A. (2021). Artificial intelligence and cognitive computing for 6G communications & networks. International Journal of Computer Science and Mobile Computing, 10(3), 26–31.

    Article  Google Scholar 

  17. Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y. J. A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8), 84–90.

    Article  Google Scholar 

  18. Zhang, S., & Zhu, D. (2020). Towards artificial intelligence enabled 6G: State of the art, challenges, and opportunities. Computer Networks, 183, 107556.

    Article  Google Scholar 

  19. Kato, N., Mao, B., Tang, F., Kawamoto, Y., & Liu, J. (2020). Ten challenges in advancing machine learning technologies toward 6G. IEEE Wireless Communications, 27(3), 96–103. [9061001]. https://doi.org/10.1109/MWC.001.1900476

    Article  Google Scholar 

  20. Ismail, L., & Buyya, R. (2022). Artificial intelligence applications and self-learning 6G networks for smart cities digital ecosystems: Taxonomy, challenges, and future directions. Sensors, 22(15), 5750.

    Article  Google Scholar 

  21. Manogaran, G., Rawal, B. S., Saravanan, V., Kumar, P. M., Martínez, O. S., Crespo, R. G., et al. (2020). Blockchain based integrated security measure for reliable service delegation in 6G communication environment. Computer Communications, 161, 248–256.

    Article  Google Scholar 

  22. Abdel Hakeem, S. A., Hussein, H. H., & Kim, H. (2022). Security requirements and challenges of 6G technologies and applications. Sensors, 22(5), 1969.

    Article  Google Scholar 

  23. You, X., Wang, C. X., Huang, J., Gao, X., Zhang, Z., Wang, M., et al. (2021). Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. SCIENCE CHINA Information Sciences, 64(1), 1–74.

    Article  Google Scholar 

  24. Shin, W., & Vaezi, M. (2021). UAV-enabled cellular networks. In 5G and beyond (pp. 165–200). Springer.

    Chapter  Google Scholar 

  25. Huang, C., Hu, S., Alexandropoulos, G. C., Zappone, A., Yuen, C., Zhang, R., et al. (2020). Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wireless Communications, 27(5), 118–125.

    Article  Google Scholar 

  26. Strinati, E. C., Barbarossa, S., Gonzalez-Jimenez, J. L., Ktenas, D., Cassiau, N., Maret, L., & Dehos, C. (2019). 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Vehicular Technology Magazine, 14(3), 42–50.

    Article  Google Scholar 

  27. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.

    Article  Google Scholar 

  28. Guruprakash, S., Balaganesh, R., Divakar, M., Aravinth, K., & Kavitha, S. (2016). Brain controlled home automation. International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST), 2(10), 430–436.

    Google Scholar 

  29. Saad, W., Bennis, M., & Chen, M. (2019). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142.

    Article  Google Scholar 

  30. Pendleton, S. D., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y. H., et al. (2017). Perception, planning, control, and coordination for autonomous vehicles. Machines, 5(1), 6.

    Article  Google Scholar 

  31. Jagannath, A., Jagannath, J., & Melodia, T. (2021). Redefining wireless communication for 6G: Signal processing meets deep learning with deep unfolding. IEEE Transactions on Artificial Intelligence, 2(6), 528–536.

    Article  Google Scholar 

  32. Stoica, R. A., & de Abreu, G. T. F. (2019). 6G: The wireless communications network for collaborative and AI applications. arXiv preprint arXiv:1904.03413.

    Google Scholar 

  33. Zhao, J. (2019). A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks. arXiv preprint arXiv:1907.04789.

    Google Scholar 

  34. Mahmood, N. H., Alves, H., López, O. A., Shehab, M., Osorio, D. P. M., & Latva-Aho, M. (2020, March). Six key features of machine type communication in 6G. In 2020 2nd 6G wireless SUMMIT (6G SUMMIT) (pp. 1–5). IEEE.

    Google Scholar 

  35. Ismail, L., Hagimont, D., & Mossiere, J. (2000). Evaluation of the mobile agents technology: Comparison with the client/server paradigm (p. 19). Information Science and Technology (IST).

    Google Scholar 

  36. Hagimont, D., & Ismail, L. (2000). Agents mobiles et client/serveur: évaluation de performance et comparaison. Technique et science informatiques, 19(9), 1223–1244.

    Google Scholar 

  37. Ismail, L., & Belkkhouche, B. (2009, June). Full and autonomic mobility management for Mobile agents. In 2009 first international conference on advances in future Internet (pp. 31–38). IEEE.

    Chapter  Google Scholar 

  38. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: Next frontier for wireless communications. Physical Communication, 12, 16–32.

    Article  Google Scholar 

  39. Sarieddeen, H., Alouini, M. S., & Al-Naffouri, T. Y. (2019). Terahertz-band ultra-massive spatial modulation MIMO. IEEE Journal on Selected Areas in Communications, 37(9), 2040–2052.

    Article  Google Scholar 

  40. Basar, E. (2019, June). Transmission through large intelligent surfaces: A new frontier in wireless communications. In 2019 European Conference on Networks and Communications (EuCNC) (pp. 112–117). IEEE.

    Chapter  Google Scholar 

  41. Ye, H., Li, G. Y., & Juang, B. H. (2017). Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communications Letters, 7(1), 114–117.

    Article  Google Scholar 

  42. Gao, J., Hu, M., Zhong, C., Li, G. Y., & Zhang, Z. (2021). An attention-aided deep learning framework for massive MIMO channel estimation. IEEE Transactions on Wireless Communications, 21(3), 1823–1835.

    Article  Google Scholar 

  43. Zhang, M., Zeng, Y., Han, Z., & Gong, Y. (2018, June). Automatic modulation recognition using deep learning architectures. In 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1–5). IEEE.

    Google Scholar 

  44. Yang, C., He, Z., Peng, Y., Wang, Y., & Yang, J. (2019). Deep learning aided method for automatic modulation recognition. IEEE Access, 7, 109063–109068.

    Article  Google Scholar 

  45. Shi, J., Qi, L., Li, K., & Lin, Y. (2021). Signal modulation recognition method based on differential privacy federated learning. Wireless Communications and Mobile Computing, 2021, 1–13.

    Google Scholar 

  46. Finsterbusch, M., Richter, C., Rocha, E., Muller, J. A., & Hanssgen, K. (2013). A survey of payload-based traffic classification approaches. IEEE Communications Surveys & Tutorials, 16(2), 1135–1156.

    Article  Google Scholar 

  47. Ren, X., Gu, H., & Wei, W. (2021). Tree-RNN: Tree structural recurrent neural network for network traffic classification. Expert Systems with Applications, 167, 114363.

    Article  Google Scholar 

  48. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2017). Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access, 5, 18042–18050.

    Article  Google Scholar 

  49. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2017, September). Applying deep learning approaches for network traffic prediction. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2353–2358). IEEE.

    Chapter  Google Scholar 

  50. Aloraifan, D., Ahmad, I., & Alrashed, E. (2021). Deep learning based network traffic matrix prediction. International Journal of Intelligent Networks, 2, 46–56.

    Article  Google Scholar 

  51. Liu, D., Chen, B., Yang, C., & Molisch, A. F. (2016). Caching at the wireless edge: Design aspects, challenges, and future directions. IEEE Communications Magazine, 54(9), 22–28.

    Article  Google Scholar 

  52. Jiang, F., Yuan, Z., Sun, C., & Wang, J. (2019). Deep Q-learning-based content caching with update strategy for fog radio access networks. IEEE Access, 7, 97505–97514.

    Article  Google Scholar 

  53. Yu, Z., Hu, J., Min, G., Wang, Z., Miao, W., & Li, S. (2021). Privacy-preserving federated deep learning for cooperative hierarchical caching in fog computing. IEEE Internet of Things Journal, 9, 22246.

    Article  Google Scholar 

  54. Sharifi, A. M., Amirgholipour, S. K., & Pourebrahimi, A. (2015). Intrusion detection based on joint of k-means and knn. Journal of Convergence Information Technology, 10(5), 42.

    Google Scholar 

  55. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954–21961.

    Article  Google Scholar 

  56. Tang, F., Mao, B., Fadlullah, Z. M., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). On removing routing protocol from future wireless networks: A real-time deep learning approach for intelligent traffic control. IEEE Wireless Communications, 25(1), 154–160.

    Article  Google Scholar 

  57. Liu, W. X., Cai, J., Chen, Q. C., & Wang, Y. (2021). DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined data-center networks. Journal of Network and Computer Applications, 177, 102865.

    Article  Google Scholar 

  58. https://www.firstpoint-mg.com/blog/top-4-challenges-in-iot-data-collection-and-management/

  59. Liyanage, M., Pham, Q. V., Dev, K., Bhattacharya, S., Maddikunta, P. K. R., Gadekallu, T. R., & Yenduri, G. (2022). A survey on Zero touch network and Service (ZSM) Management for 5G and beyond networks. Journal of Network and Computer Applications, 103362.

    Google Scholar 

  60. Gündüz, D., de Kerret, P., Sidiropoulos, N. D., Gesbert, D., Murthy, C. R., & van der Schaar, M. (2019). Machine learning in the air. IEEE Journal on Selected Areas in Communications, 37(10), 2184–2199.

    Article  Google Scholar 

  61. Chen, M., Semiari, O., Saad, W., Liu, X., & Yin, C. (2019). Federated echo state learning for minimizing breaks in presence in wireless virtual reality networks. IEEE Transactions on Wireless Communications, 19(1), 177–191.

    Article  Google Scholar 

  62. Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J. F., Hoglund, A., et al. (2016). LTE release 14 outlook. IEEE Communications Magazine, 54(6), 44–49.

    Article  Google Scholar 

  63. Pramanik, P. K. D., Solanki, A., Debnath, A., Nayyar, A., El-Sappagh, S., & Kwak, K. S. (2020). Advancing modern healthcare with nanotechnology, nanobiosensors, and Internet of nano things: Taxonomies, applications, architecture, and challenges. IEEE Access, 8, 65230–65266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohbey, K.K., Acharya, M. (2023). The Role of Machine Learning in the Advancement of 6G Technology: Opportunities and Challenges. In: Kumar, M., Gill, S.S., Samriya, J.K., Uhlig, S. (eds) 6G Enabled Fog Computing in IoT. Springer, Cham. https://doi.org/10.1007/978-3-031-30101-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30101-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30100-1

  • Online ISBN: 978-3-031-30101-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics