Skip to main content

Combining Poly (ADP-Ribose) Polymerase (PARP) Inhibitors with Chemotherapeutic Agents: Promise and Challenges

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 186))

  • 513 Accesses

Abstract

Better understanding of molecular drivers and dysregulated pathways has furthered the concept of precision oncology and rational drug development. The role of DNA damage response (DDR) pathways has been extensively studied in carcinogenesis and as potential therapeutic targets to improve response to chemotherapy or overcome resistance. Treatment with small molecule inhibitors of PARP has resulted in clinical response and conferred survival benefit to patients with ovarian cancer, BRCA-mutant breast cancer, HRD-deficient prostate cancer and BRCA-mutant pancreatic cancer, leading to US Food and Drug Administration (FDA) approvals. However, the observed clinical benefit with single agent PARP inhibitors is limited to few tumor types within the relevant genetic context. Since DDR pathways are essential for repair of damage caused by cytotoxic agents, PARP inhibitors have been evaluated in combination with various chemotherapeutic agents to broaden the therapeutic application of this class of drugs. In this chapter, we discuss the combination of PARP inhibitors with different chemotherapeutics agents, clinical experience to date, lessons learnt, and future directions for this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu Y et al (2018) Double-barreled gun: combination of PARP inhibitor with conventional chemotherapy. Pharmacol Ther 188:168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dias MP et al (2021) Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 18(12):773–791

    Article  PubMed  Google Scholar 

  3. Li H et al (2020) PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer 19(1):107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Howard SM, Yanez DA, Stark JM (2015) DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet 11(1):e1004943

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cerrato A, Morra F, Celetti A (2016) Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res 35(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  6. Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356(6367):356–358

    Article  CAS  PubMed  Google Scholar 

  7. Yap TA et al (2019) The DNA damaging revolution: PARP inhibitors and beyond. Am Soc Clin Oncol Educ Book 39:185–195

    Article  PubMed  Google Scholar 

  8. Nielsen FC, van Overeem Hansen T, Sørensen CS (2016) Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 16(9):599–612

    Google Scholar 

  9. (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–15

    Google Scholar 

  10. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946

    Article  CAS  PubMed  Google Scholar 

  11. Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science 355(6330):1152–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Litton JK et al (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 379(8):753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore K et al (2018) Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 379(26):2495–2505

    Article  CAS  PubMed  Google Scholar 

  14. Pujade-Lauraine E et al (2017) Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18(9):1274–1284

    Article  CAS  PubMed  Google Scholar 

  15. Penson RT et al (2020) Olaparib versus nonplatinum chemotherapy in patients with platinum-sensitive relapsed ovarian cancer and a germline BRCA1/2 Mutation (SOLO3): a randomized phase III trial. J Clin Oncol 38(11):1164–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ray-Coquard I et al (2019) Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 381(25):2416–2428

    Article  CAS  PubMed  Google Scholar 

  17. Golan T et al (2019) Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 381(4):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anscher MS et al (2021) FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA-mutated metastatic castrate-resistant prostate cancer. Oncologist 26(2):139–146

    Article  CAS  PubMed  Google Scholar 

  19. Coleman RL et al (2017) Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10106):1949–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. González-Martín A et al (2019) Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 381(25):2391–2402

    Article  PubMed  Google Scholar 

  21. Mirza MR et al (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375(22):2154–2164

    Article  CAS  PubMed  Google Scholar 

  22. Farmer H et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  23. Ekblad T et al (2013) PARP inhibitors: polypharmacology versus selective inhibition. Febs J 280(15):3563–3575

    Article  CAS  PubMed  Google Scholar 

  24. Donawho CK et al (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13(9):2728–2737

    Article  CAS  PubMed  Google Scholar 

  25. Wagner LM (2015) Profile of veliparib and its potential in the treatment of solid tumors. Onco Targets Ther 8:1931–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su JM et al (2014) A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a pediatric brain tumor consortium report. Neuro Oncol 16(12):1661–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murai J et al (2014) Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 13(2):433–443

    Article  CAS  PubMed  Google Scholar 

  28. Murai J et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Litton JK et al (2020) Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann Oncol 31(11):1526–1535

    Article  CAS  PubMed  Google Scholar 

  30. Golan T et al. (2021) Overall survival from the phase 3 POLO trial: Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. J Clinical Oncol 39(3_suppl):378–378

    Google Scholar 

  31. Michels J et al (2013) Cisplatin resistance associated with PARP hyperactivation. Cancer Res 73(7):2271–2280

    Article  CAS  PubMed  Google Scholar 

  32. Jacob DA et al (2007) Combination therapy of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide and gemcitabine shows strong antitumor activity in pancreatic cancer cells. J Gastroenterol Hepatol 22(5):738–748

    Article  CAS  PubMed  Google Scholar 

  33. Balmaña J et al (2014) Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol 25(8):1656–1663

    Article  PubMed  Google Scholar 

  34. Kummar S et al (2015) Randomized trial of oral cyclophosphamide and Veliparib in high-grade serous ovarian, primary peritoneal, or fallopian tube cancers, or brca-mutant ovarian cancer. Clin Cancer Res 21(7):1574–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee JM et al. (2014) Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst 106(6):dju089

    Google Scholar 

  36. Kummar S et al (2016) Randomized phase II trial of cyclophosphamide and the oral poly (ADP-ribose) polymerase inhibitor veliparib in patients with recurrent, advanced triple-negative breast cancer. Invest New Drugs 34(3):355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu J et al (2021) Phase II trial of veliparib and temozolomide in metastatic breast cancer patients with and without BRCA1/2 mutations. Breast Cancer Res Treat 189(3):641–651

    Article  CAS  PubMed  Google Scholar 

  38. Kummar S et al (2012) A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res 18(6):1726–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LoRusso PM et al (2016) Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor Veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin Cancer Res 22(13):3227–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Appleman LJ et al (2019) Phase 1 study of veliparib (ABT-888), a poly (ADP-ribose) polymerase inhibitor, with carboplatin and paclitaxel in advanced solid malignancies. Cancer Chemother Pharmacol 84(6):1289–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Del Conte G et al (2014) Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br J Cancer 111(4):651–659

    Article  PubMed  PubMed Central  Google Scholar 

  42. van der Noll R et al (2020) Phase I study of continuous olaparib capsule dosing in combination with carboplatin and/or paclitaxel (Part 1). Invest New Drugs 38(4):1117–1128

    Article  PubMed  Google Scholar 

  43. van der Noll R et al (2020) Phase I study of intermittent olaparib capsule or tablet dosing in combination with carboplatin and paclitaxel (part 2). Invest New Drugs 38(4):1096–1107

    Article  PubMed  Google Scholar 

  44. Khan OA et al (2011) A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours. Br J Cancer 104(5):750–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson RH et al (2017) A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br J Cancer 116(7):884–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodler ET et al (2016) Phase I study of Veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin Cancer Res 22(12):2855–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dent RA et al (2013) Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 15(5):R88

    Article  PubMed  PubMed Central  Google Scholar 

  48. Diéras V et al (2020) Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21(10):1269–1282

    Article  PubMed  Google Scholar 

  49. Han HS et al (2018) Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study. Ann Oncol 29(1):154–161

    Article  CAS  PubMed  Google Scholar 

  50. Loibl S et al (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19(4):497–509

    Article  CAS  PubMed  Google Scholar 

  51. Gray HJ et al (2018) Phase I combination study of the PARP inhibitor veliparib plus carboplatin and gemcitabine in patients with advanced ovarian cancer and other solid malignancies. Gynecol Oncol 148(3):507–514

    Article  CAS  PubMed  Google Scholar 

  52. Perez-Fidalgo JA et al (2021) Olaparib in combination with pegylated liposomal doxorubicin for platinum-resistant ovarian cancer regardless of BRCA status: a GEICO phase II trial (ROLANDO study). ESMO Open 6(4):100212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oza AM et al (2015) Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol 16(1):87–97

    Article  CAS  PubMed  Google Scholar 

  54. Coleman RL et al (2019) Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med 381(25):2403–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thaker PH et al (2017) A phase I trial of paclitaxel, cisplatin, and veliparib in the treatment of persistent or recurrent carcinoma of the cervix: an NRG oncology study (NCT#01281852). Ann Oncol 28(3):505–511

    Article  CAS  PubMed  Google Scholar 

  56. Ramalingam SS et al (2017) Randomized, placebo-controlled, phase II study of Veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung cancer. Clin Cancer Res 23(8):1937–1944

    Article  CAS  PubMed  Google Scholar 

  57. Ramalingam SS et al (2021) Veliparib in combination with platinum-based chemotherapy for first-line treatment of advanced squamous cell lung cancer: a randomized, multicenter phase III study. J Clin Oncol 39(32):3633–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farago AF et al (2019) Combination olaparib and temozolomide in relapsed small-cell lung cancer. Cancer Discov 9(10):1372–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pietanza MC et al (2018) Randomized, double-blind, phase II study of Temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. J Clin Oncol 36(23):2386–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murai J et al (2019) Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacol Ther 201:94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Owonikoko TK et al (2019) Randomized phase II trial of cisplatin and etoposide in combination with veliparib or placebo for extensive-stage small-cell lung cancer: ECOG-ACRIN 2511 study. J Clin Oncol 37(3):222–229

    Article  CAS  PubMed  Google Scholar 

  62. Byers LA et al (2021) Veliparib in combination with carboplatin and etoposide in patients with treatment-naïve extensive-stage small cell lung cancer: a phase 2 randomized study. Clin Cancer Res 27(14):3884–3895

    Article  CAS  PubMed  Google Scholar 

  63. Gorbunova V et al (2019) A phase 2 randomised study of veliparib plus FOLFIRI±bevacizumab versus placebo plus FOLFIRI±bevacizumab in metastatic colorectal cancer. Br J Cancer 120(2):183–189

    Article  CAS  PubMed  Google Scholar 

  64. O’Reilly EM et al (2020) Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol 38(13):1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pishvaian MJ et al (2020) A phase I/II study of Veliparib (ABT-888) in combination with 5-Fluorouracil and oxaliplatin in patients with metastatic pancreatic cancer. Clin Cancer Res 26(19):5092–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiorean EG et al (2021) Randomized phase II study of PARP inhibitor ABT-888 (Veliparib) with modified FOLFIRI versus FOLFIRI as second-line treatment of metastatic pancreatic Cancer: SWOG S1513. Clin Cancer Res 27(23):6314–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bang YJ et al (2015) Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 33(33):3858–3865

    Article  CAS  PubMed  Google Scholar 

  68. Bang YJ et al (2017) Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18(12):1637–1651

    Article  CAS  PubMed  Google Scholar 

  69. Chugh R et al (2021) SARC025 arms 1 and 2: a phase 1 study of the poly(ADP-ribose) polymerase inhibitor niraparib with temozolomide or irinotecan in patients with advanced Ewing sarcoma. Cancer 127(8):1301–1310

    Article  CAS  PubMed  Google Scholar 

  70. Grignani G et al (2018) Trabectedin and olaparib in patients with advanced and non-resectable bone and soft-tissue sarcomas (TOMAS): an open-label, phase 1b study from the Italian Sarcoma Group. Lancet Oncol 19(10):1360–1371

    Article  CAS  PubMed  Google Scholar 

  71. Middleton MR et al (2015) Randomized phase II study evaluating veliparib (ABT-888) with temozolomide in patients with metastatic melanoma. Ann Oncol 26(10):2173–2179

    Article  CAS  PubMed  Google Scholar 

  72. Jelinek MJ et al (2021) A phase I trial adding poly(ADP-ribose) polymerase inhibitor veliparib to induction carboplatin-paclitaxel in patients with head and neck squamous cell carcinoma: alliance A091101. Oral Oncol 114:105171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Federico SM et al (2020) A phase I trial of talazoparib and irinotecan with and without temozolomide in children and young adults with recurrent or refractory solid malignancies. Eur J Cancer 137:204–213

    Article  CAS  PubMed  Google Scholar 

  74. Schafer ES et al (2020) Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a children’s oncology group phase 1 consortium study (ADVL1411). Pediatr Blood Cancer 67(2):e28073

    Article  PubMed  Google Scholar 

  75. Baxter PA et al (2020) A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: a pediatric brain tumor consortium study. Neuro Oncol 22(6):875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sim HW et al (2021) A randomized phase II trial of veliparib, radiotherapy, and temozolomide in patients with unmethylated MGMT glioblastoma: the VERTU study. Neuro Oncol 23(10):1736–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yap TA et al. (2022) CT007—PETRA: first in class, first in human trial of the next generation PARP1-selective inhibitor AZD5305 in patients (pts) with BRCA1/2, PALB2 or RAD51C/D mutations. In: American Association for Cancer Research Annual Meeting 2022. New Orleans, LA

    Google Scholar 

Download references

Disclosures

KZT

No conflicts of interest.

RT

No conflicts of interest.

SK

Advisory board/consultant for Boehringer Ingelheim, Springworks Therapeutics, Gilead, EcoR1, Seagen, Mundibiopharma, Bayer, Genome & Company, Mirati, OxfordBiotherapeutics, and Harbour Biomed; co-founder and equity holder for PathomlQ, spouse is a scientific advisor for Cadila Pharmaceuticals ltd and founder of Arxeon Inc.

Acknowledgements

None

Authorship Contributions

All the authors have significantly contributed to the preparation of this manuscript and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaani Kummar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thein, K.Z., Thawani, R., Kummar, S. (2023). Combining Poly (ADP-Ribose) Polymerase (PARP) Inhibitors with Chemotherapeutic Agents: Promise and Challenges. In: Yap, T.A., Shapiro, G.I. (eds) Targeting the DNA Damage Response for Cancer Therapy. Cancer Treatment and Research, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-031-30065-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30065-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30064-6

  • Online ISBN: 978-3-031-30065-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics