Skip to main content

WRN Is a Promising Synthetic Lethal Target for Cancers with Microsatellite Instability (MSI)

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 186))

Abstract

Microsatellite instability (MSI), a type of genetic hypermutability arising from impaired DNA mismatch repair (MMR), is observed in approximately 3% of all cancers. Preclinical work has identified the RecQ helicase WRN as a promising synthetic lethal target for patients with MSI cancers. WRN depletion substantially impairs the viability of MSI, but not microsatellite stable (MSS), cells. Experimental evidence suggests that this synthetic lethal phenotype is driven by numerous TA dinucleotide repeats that undergo expansion mutations in the setting of long-standing MMR deficiency. The lengthening of TA repeats increases their propensity to form secondary DNA structures that require WRN to resolve. In the absence of WRN helicase activity, these unresolved DNA secondary structures stall DNA replication forks and induce catastrophic DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moore K, Colombo N, Scambia G, Kim B-G, Oaknin A, Friedlander M et al (2018) Maintenance Olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 379(26):2495–2505

    Article  CAS  PubMed  Google Scholar 

  2. Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R et al (2019) Olaparib plus Bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 381(25):2416–2428

    Article  CAS  PubMed  Google Scholar 

  3. Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A et al (2017) Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10106):1949–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topatana W, Juengpanich S, Li S, Cao J, Hu J, Lee J et al (2020) Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. J Hematol Oncol 13(1):1–22

    Article  Google Scholar 

  5. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H et al (2017) Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet 49(12):1779–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G et al (2019) Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568(7753):511–516

    Article  CAS  PubMed  Google Scholar 

  7. McDonald ER 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR et al (2017) Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170(3):577–92.e10

    Article  CAS  PubMed  Google Scholar 

  8. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd et al (2019) Next-generation characterization of the cancer cell line Encyclopedia. Nature 569(7757):503–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N et al (2019) WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568(7753):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lieb S, Blaha-Ostermann S, Kamper E, Rippka J, Schwarz C, Ehrenhöfer-Wölfer K et al (2019) Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. Elife 25(8):e43333

    Article  Google Scholar 

  11. Kategaya L, Perumal SK, Hager JH, Belmont LD (2019) Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13:488–497

    Google Scholar 

  12. Li G-M (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98

    Article  CAS  PubMed  Google Scholar 

  13. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–87.e3

    Article  CAS  PubMed  Google Scholar 

  14. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6):435–445

    Article  CAS  PubMed  Google Scholar 

  15. Brown MW, Kim Y, Williams GM, Huck JD, Surtees JA, Finkelstein IJ (2016) Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat Commun 3(7):10607

    Article  Google Scholar 

  16. Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLα in human mismatch repair. Cell 126(2):297–308

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129(7–8):391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peltomäki P. Lynch Syndrome Genes [Internet]. Vol. 4, Familial Cancer. 2005. p. 227–32. Available from: https://doi.org/10.1007/s10689-004-7993-0

  19. Lipkin SM, Wang V, Jacoby R, Banerjee-Basu S, Baxevanis AD, Lynch HT et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Berends MJ, Post JG, Mensink RG, Verlind E, Van Der Sluis T et al (2001) Germline mutations of EXO1 gene in patients with hereditary nonpolyposis colorectal cancer (HNPCC) and atypical HNPCC forms. Gastroenterology 120(7):1580–1587

    Article  CAS  PubMed  Google Scholar 

  21. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR (2009) Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet 76(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B (2002) Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 51(6):797–802

    Article  PubMed  PubMed Central  Google Scholar 

  23. Advani SM, Advani P, DeSantis SM, Brown D, VonVille HM, Lam M et al (2018) Clinical, pathological, and molecular characteristics of CpG Island methylator phenotype in colorectal cancer: a systematic review and meta-analysis. Transl Oncol 11(5):1188–1201

    Article  PubMed  PubMed Central  Google Scholar 

  24. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61(9):3573–3577

    CAS  PubMed  Google Scholar 

  25. Lynch HT, Lynch JF, Lynch PM (2007) Toward a consensus in molecular diagnosis of hereditary nonpolyposis colorectal cancer (Lynch syndrome). J Natl Cancer Inst 99(4):261–263

    Article  CAS  PubMed  Google Scholar 

  26. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Frankel WL (2019) A practical guide to biomarkers for the evaluation of colorectal cancer. Mod Pathol 32(Suppl 1):1–15

    Article  PubMed  Google Scholar 

  28. Pawlik TM, Raut CP, Rodriguez-Bigas MA (2004) Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers 20(4–5):199–206

    Article  PubMed  PubMed Central  Google Scholar 

  29. Colomer R, Mondejar R, Romero-Laorden N, Alfranca A, Sanchez-Madrid F, Quintela-Fandino M (2020) When should we order a next generation sequencing test in a patient with cancer? EClinicalMedicine. 25:100487

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nagahashi M, Shimada Y, Ichikawa H, Kameyama H, Takabe K, Okuda S et al (2019) Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci 110(1):6–15

    Article  CAS  PubMed  Google Scholar 

  31. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A et al (2015) Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 17(3):251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcia EP, Minkovsky A, Jia Y, Ducar MD, Shivdasani P, Gong X et al (2017) Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch Pathol Lab Med 141(6):751–758

    Article  CAS  PubMed  Google Scholar 

  33. Middha S, Zhang L, Nafa K, Jayakumaran G, Wong D, Kim HR et al (2017) Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis Oncol [Internet]. Available from: https://doi.org/10.1200/PO.17.00084

  34. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen H-Z et al (2017) Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol [Internet]. 2017. Available from: https://doi.org/10.1200/PO.17.00073

  35. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA et al (2019) Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 5(4):471–478

    Article  PubMed  Google Scholar 

  36. Ozer E, Yuksel E, Kizildag S, Sercan O, Ozen E, Canda T et al (2002) Microsatellite instability in early-onset breast cancer. Pathol Res Pract 198(8):525–530

    Article  CAS  PubMed  Google Scholar 

  37. Fraune C, Simon R, Hube-Magg C, Makrypidi-Fraune G, Kähler C, Kluth M et al (2020) MMR deficiency in urothelial carcinoma of the bladder presents with temporal and spatial homogeneity throughout the tumor mass. Urol Oncol 38(5):488–495

    Article  CAS  PubMed  Google Scholar 

  38. Kullmann F, Strissel PL, Strick R, Stoehr R, Eckstein M, Bertz S et al (2021) Frequency of microsatellite instability (MSI) in upper tract urothelial carcinoma: comparison of the Bethesda panel and the Idylla MSI assay in a consecutively collected, multi-institutional cohort. J Clin Pathol [Internet]. Available from: https://jcp.bmj.com/content/early/2021/09/27/jclinpath-2021-207855.abstract

  39. Wilentz RE, Goggins M, Redston M, Marcus VA, Adsay NV, Sohn TA et al (2000) Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: A newly described and characterized entity. Am J Pathol 156(5):1641–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goeppert B, Roessler S, Renner M, Singer S, Mehrabi A, Vogel MN et al (2019) Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer 120(1):109–114

    Article  CAS  PubMed  Google Scholar 

  41. Genutis LK, Tomsic J, Bundschuh RA, Brock PL, Williams MD, Roychowdhury S et al (2019) Microsatellite instability occurs in a subset of follicular thyroid cancers. Thyroid 29(4):523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saeterdal I, Bjørheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A 98(23):13255–13260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao H, Yoon YS, Hong S-M, Roh SA, Cho D-H, Yu CS et al (2013) Poorly differentiated colorectal cancers: correlation of microsatellite instability with clinicopathologic features and survival. Am J Clin Pathol 140(3):341–347

    Article  PubMed  Google Scholar 

  44. Kim CG, Ahn JB, Jung M, Beom SH, Kim C, Kim JH et al (2016) Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers. Br J Cancer 115(1):25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hutchins G, Southward K, Handley K, Magill L, Beaumont C, Stahlschmidt J et al (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 29(10):1261–1270

    Article  PubMed  Google Scholar 

  46. Sargent DJ, Shi Q, Yothers G, Tejpar S, Bertagnolli MM, Thibodeau SN et al (2014) Prognostic impact of deficient mismatch repair (dMMR) in 7,803 stage II/III colon cancer (CC) patients (pts): a pooled individual pt data analysis of 17 adjuvant trials in the ACCENT database. J Clin Orthod 32(15_suppl):3507–3507

    Google Scholar 

  47. Sanz-Garcia E, Argiles G, Elez E, Tabernero J (2017) BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol 28(11):2648–2657

    Article  CAS  PubMed  Google Scholar 

  48. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28(20):3219–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. André T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-Raballand A et al (2015) Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 33(35):4176–4187

    Article  PubMed  Google Scholar 

  50. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, Morse MA et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M et al (2018) Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 36(8):773–779

    Article  CAS  PubMed  Google Scholar 

  53. André T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt C et al (2020) Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 383(23):2207–2218

    Article  PubMed  Google Scholar 

  54. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M et al (2016) A landscape of pharmacogenomic interactions in cancer. Cell 166(3):740–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo J (2010) WRN protein and Werner syndrome. N Am J Med Sci 3(4):205–207

    Article  Google Scholar 

  56. A role for WRN in telomere-based DNA damage responses [Internet]. PNAS. [cited 2022 Apr 18]. Available from: https://www.pnas.org/doi/https://doi.org/10.1073/pnas.0607332103

  57. Agrelo R, Cheng W-H, Setien F, Ropero S, Espada J, Fraga MF et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U S A 103(23):8822–8827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kitano K (2014) Structural mechanisms of human RecQ helicases WRN and BLM. Front Genet 29(5):366

    Google Scholar 

  59. Marciniak RA, Lombard DB, Johnson FB, Guarente L (1998) Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci U S A 95(12):6887–6892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID et al (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1(1):80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Su F, Mukherjee S, Yang Y, Mori E, Bhattacharya S, Kobayashi J et al (2014) Nonenzymatic role for WRN in preserving nascent DNA strands after replication stress. Cell Rep 9(4):1387–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma S, Otterlei M, Sommers JA, Driscoll HC, Dianov GL, Kao H-I et al (2004) WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork [Internet]. Mol Biol Cell 15:734–750. Available from: https://doi.org/10.1091/mbc.e03-08-0567

  63. Machwe A, Xiao L, Lloyd RG, Bolt E (2007) … regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN …. Nucleic acids [Internet]. Available from: https://academic.oup.com/nar/article-abstract/35/17/5729/2402088

  64. Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA et al (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101(2):121–125

    Article  CAS  PubMed  Google Scholar 

  65. Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15(7):1224–1226

    Article  CAS  PubMed  Google Scholar 

  66. Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A et al (1999) Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem 274(26):18341–18350

    Article  CAS  PubMed  Google Scholar 

  67. Sakamoto S, Nishikawa K, Heo SJ, Goto M, Furuichi Y, Shimamoto A (2001) Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51. Genes Cells 6(5):421–430

    Article  CAS  PubMed  Google Scholar 

  68. Baynton K, Otterlei M, Bjørås M, von Kobbe C, Bohr VA, Seeberg E (2003) WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 278(38):36476–36486

    Article  CAS  PubMed  Google Scholar 

  69. Lebel M (2003) Genetic cooperation between poly (ADP-ribose) polymerase-1 in preventing chromosome breaks, complex chromosomal rearrangements and cancer in mice. Am J Pathol 162:1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blander G, Kipnis J, Leal JF, Yu CE, Schellenberg GD, Oren M (1999) Physical and functional interaction between p53 and the Werner’s syndrome protein. J Biol Chem 274(41):29463–29469

    Article  CAS  PubMed  Google Scholar 

  71. Li B, Comai L (2002) Displacement of DNA-PKcs from DNA ends by the Werner syndrome protein. Nucleic Acids Res 30(17):3653–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pichierri P, Rosselli F, Franchitto A (2003) Werner’s syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle [Internet]. Oncogene 22:1491–1500. Available from: https://doi.org/10.1038/sj.onc.1206169

  73. Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA (2016) WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 6(7):13785

    Article  Google Scholar 

  74. Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ Jr (2002) Homologous recombination resolution defect in Werner syndrome. Mol Cell Biol 22(20):6971–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Prince PR, Emond MJ, Monnat RJ Jr (2001) Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev 15(8):933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Von Kobbe C, May A, Grandori C, Bohr VA (2004) Werner syndrome cells escape hydrogen peroxide-induced cell proliferation arrest. FASEB J 18(15):1970–1972

    Article  Google Scholar 

  77. Szekely AM, Bleichert F, Nümann A, Van Komen S, Manasanch E, Ben Nasr A et al (2005) Werner protein protects nonproliferating cells from oxidative DNA damage [Internet]. Mol Cell Biol. 25:10492–10506. Available from: https://doi.org/10.1128/mcb.25.23.10492-10506.2005

  78. Rossi ML, Ghosh AK, Bohr VA (2010) Roles of Werner syndrome protein in protection of genome integrity. DNA Repair 9(3):331–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eller MS, Liao X, Liu S, Hanna K, Bäckvall H, Opresko PL et al (2006) A role for WRN in telomere-based DNA damage responses. Proc Natl Acad Sci U S A 103(41):15073–15078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kølvraa S et al (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14(6):763–774

    Article  CAS  PubMed  Google Scholar 

  81. Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J et al (2005) Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118(Pt 18):4153–4162

    Article  CAS  PubMed  Google Scholar 

  82. Newman JA, Gavard AE, Lieb S, Ravichandran MC, Hauer K, Werni P et al (2021) Structure of the helicase core of Werner helicase, a key target in microsatellite instability cancers. Life Sci Alliance [Internet]. 4(1). Available from: https://doi.org/10.26508/lsa.202000795

  83. Lazzari L, Corti G, Picco G, Isella C, Montone M, Arcella P et al (2019) Patient-derived xenografts and matched cell lines identify pharmacogenomic vulnerabilities in colorectal cancer. Clin Cancer Res 25(20):6243–6259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Picco G, Cattaneo CM, van Vliet EJ, Crisafulli G, Rospo G, Consonni S et al (2021) Werner helicase is a synthetic-lethal vulnerability in mismatch repair-deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy. Cancer Discov 11(8):1923–1937

    Article  CAS  PubMed  Google Scholar 

  85. Muftuoglu M, Oshima J, von Kobbe C, Cheng W-H, Leistritz DF, Bohr VA (2008) The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124(4):369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, Bronson R et al (2000) Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 20(9):3286–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tobalina L, Armenia J, Irving E, O’Connor MJ, Forment JV (2021) A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol 32(1):103–112

    Article  CAS  PubMed  Google Scholar 

  88. van Wietmarschen N, Sridharan S, Nathan WJ, Tubbs A, Chan EM, Callen E et al (2020) Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586(7828):292–298

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim T-M, Laird PW, Park PJ (2013) The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155(4):858–868

    Article  CAS  PubMed  Google Scholar 

  90. Kaushal S, Wollmuth CE, Das K, Hile SE, Regan SB, Barnes RP et al (2019) Sequence and nuclease requirements for breakage and healing of a structure-forming (AT)n sequence within fragile site FRA16D. Cell Rep 27(4):1151–64.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Indraccolo S, Lombardi G, Fassan M, Pasqualini L, Giunco S, Marcato R et al (2019) Genetic, epigenetic, and immunologic PROFILING of MMR-deficient relapsed glioblastoma. Clin Cancer Res 25(6):1828–1837

    Article  CAS  PubMed  Google Scholar 

  92. Murai J, Huang S-YN, Das BB, Renaud A, Zhang Y, Doroshow JH et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599

    Google Scholar 

  93. Hopkins TA, Ainsworth WB, Ellis PA, Donawho CK, DiGiammarino EL, Panchal SC et al (2019) PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. Mol Cancer Res 17(2):409–419

    Article  CAS  PubMed  Google Scholar 

  94. Aggarwal M, Banerjee T, Sommers JA, Iannascoli C, Pichierri P, Shoemaker RH et al (2013) Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional fanconi anemia pathway. Cancer Res 73(17):5497–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spies M, Fishel R (2015) Mismatch repair during homologous and homeologous recombination. Cold Spring Harb Perspect Biol 7(3):a022657

    Article  PubMed  PubMed Central  Google Scholar 

  96. Myung K, Datta A, Chen C, Kolodner RD (2001) SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 27(1):113–116

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond M. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, E.M., Foster, K.J., Bass, A.J. (2023). WRN Is a Promising Synthetic Lethal Target for Cancers with Microsatellite Instability (MSI). In: Yap, T.A., Shapiro, G.I. (eds) Targeting the DNA Damage Response for Cancer Therapy. Cancer Treatment and Research, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-031-30065-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30065-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30064-6

  • Online ISBN: 978-3-031-30065-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics