Skip to main content

Targeting Polymerase Theta (POLθ) for Cancer Therapy

  • Chapter
  • First Online:
Targeting the DNA Damage Response for Cancer Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 186))

Abstract

Polymerase theta (POLθ) is the critical multi-domain enzyme in microhomology-mediated end-joining DNA double-stranded break repair. POLθ is expressed at low levels in normal tissue but is often overexpressed in cancers, especially in DNA repair deficient cancers, such as homologous-recombination cancers, rendering them exquisitely sensitive to POLθ inhibition secondary to synthetic lethality. Development of POLθ inhibitors is an active area of investigation with inhibitors of the N-terminal helicase domain or the C-terminal polymerase domain currently in clinical trial. Here, we review POLθ-mediated microhomology-mediated end-joining, the development of POLθ inhibitors, and the potential clinical uses of POLθ inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64

    Article  CAS  PubMed  Google Scholar 

  2. Nilles N, Fahrenkrog B (2017) Taking a bad turn: compromised DNA damage response in leukemia. Cells 6(2)

    Google Scholar 

  3. Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7(10):739–750

    Article  CAS  PubMed  Google Scholar 

  4. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chapman JR, Taylor MRG, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47(4):497–510

    Article  CAS  PubMed  Google Scholar 

  6. Bunting SF, Nussenzweig A (2013) End-joining, translocations and cancer. Nat Rev Cancer 13(7):443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Helleday T, Eshtad S, Nik-Zainal S (2014) Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 15(9):585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carvalho CMB, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17(4):224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mari P-O, Florea BI, Persengiev SP, Verkaik NS, Brüggenwirth HT, Modesti M et al (2006) Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci U S A 103(49):18597–18602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G et al (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177(2):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McElhinny AS, Warner CM (2000) Cross-linking of Qa-2 protein, the Ped gene product, increases the cleavage rate of C57BL/6 preimplantation mouse embryos. Mol Hum Reprod 6(6):517–522

    Article  CAS  PubMed  Google Scholar 

  12. Costantini S, Woodbine L, Andreoli L, Jeggo PA, Vindigni A (2007) Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. DNA Repair (Amst). 6(6):712–722

    Article  CAS  PubMed  Google Scholar 

  13. Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33–58

    Article  CAS  PubMed  Google Scholar 

  14. Yano K, Morotomi-Yano K, Akiyama H (2009) Cernunnos/XLF: a new player in DNA double-strand break repair. Int J Biochem Cell Biol 41(6):1237–1240

    Article  CAS  PubMed  Google Scholar 

  15. Bétermier M, Bertrand P, Lopez BS (2014) Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 10(1):e1004086

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J et al (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stracker TH, Petrini JHJ (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12(2):90–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  19. Anand R, Ranjha L, Cannavo E, Cejka P (2016) Phosphorylated CtIP functions as a Co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell 64(5):940–950

    Article  CAS  PubMed  Google Scholar 

  20. Daley JM, Jimenez-Sainz J, Wang W, Miller AS, Xue X, Nguyen KA et al (2017) Enhancement of BLM-DNA2-mediated long-range DNA end resection by CtIP. Cell Rep 21(2):324–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilkinson OJ, Martín-González A, Kang H, Northall SJ, Wigley DB, Moreno-Herrero F et al (2019) CtIP forms a tetrameric dumbbell-shaped particle which bridges complex DNA end structures for double-strand break repair. Elife 8

    Google Scholar 

  22. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5(11):a012740

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19(1):1–9

    Article  PubMed  Google Scholar 

  24. Densham RM, Morris JR (2019) Moving mountains—The BRCA1 promotion of DNA resection. Front Mol Biosci 6:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia V, Phelps SEL, Gray S, Neale MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479(7372):241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cannavo E, Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514(7520):122–125

    Article  CAS  PubMed  Google Scholar 

  27. Daley JM, Niu H, Miller AS, Sung P (2015) Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst). 32:66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mansour WY, Rhein T, Dahm-Daphi J (2010) The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 38(18):6065–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robert I, Dantzer F, Reina-San-Martin B (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206(5):1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou G-M, Maitra A (2008) Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration. Mol Cancer Ther 7(7):2012–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R, Raghavan SC (2015) Homology and enzymatic requirements of microhomology-dependent alternative end joining. Cell Death Dis 6:e1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hogg M, Sauer-Eriksson AE, Johansson E (2012) Promiscuous DNA synthesis by human DNA polymerase θ. Nucleic Acids Res 40(6):2611–2622

    Article  CAS  PubMed  Google Scholar 

  33. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat Struct Mol Biol 22(3):230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, Mieczkowski P et al (2016) Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol Cell 63(4):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yousefzadeh MJ, Wyatt DW, Takata K-I, Mu Y, Hensley SC, Tomida J et al (2014) Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 10(10):e1004654

    Article  PubMed  PubMed Central  Google Scholar 

  37. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279(53):55117–55126

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F et al (2005) DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65(10):4020–4030

    Article  CAS  PubMed  Google Scholar 

  39. Chan SH, Yu AM, McVey M (2010) Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 6(7):e1001005

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carvajal-Garcia J, Cho J-E, Carvajal-Garcia P, Feng W, Wood RD, Sekelsky J et al (2020) Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proc Natl Acad Sci U S A 117(15):8476–8485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng W, Simpson DA, Carvajal-Garcia J, Price BA, Kumar RJ, Mose LE et al (2019) Genetic determinants of cellular addiction to DNA polymerase theta. Nat Commun 10(1):4286

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MIR et al (2015) Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518(7538):258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT (2018) Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J Biol Chem 293(14):5259–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seki M, Marini F, Wood RD (2003) POLQ (Pol theta), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res 31(21):6117–6126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Black SJ, Ozdemir AY, Kashkina E, Kent T, Rusanov T, Ristic D et al (2019) Molecular basis of microhomology-mediated end-joining by purified full-length Polθ. Nat Commun 10(1):4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, et al (2021) Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Sci Adv 7(24)

    Google Scholar 

  47. Kawamura K, Bahar R, Seimiya M, Chiyo M, Wada A, Okada S et al (2004) DNA polymerase theta is preferentially expressed in lymphoid tissues and upregulated in human cancers. Int J cancer 109(1):9–16

    Article  CAS  PubMed  Google Scholar 

  48. Lemée F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire M-J, Bieth A et al (2010) DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc Natl Acad Sci U S A 107(30):13390–13395

    Article  PubMed  PubMed Central  Google Scholar 

  49. Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM (2010) Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 1(3):175–184

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A (2015) Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518(7538):254–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mateo J, Carreira S, de Bono JS (2019) PARP inhibitors for advanced prostate cancer: validating predictive biomarkers. Eur Urol 76(4):459–460

    Article  CAS  PubMed  Google Scholar 

  52. Curtin NJ, Szabo C (2020) Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 19(10):711–736

    Article  CAS  PubMed  Google Scholar 

  53. Sharief FS, Vojta PJ, Ropp PA, Copeland WC (1999) Cloning and chromosomal mapping of the human DNA polymerase theta (POLQ), the eighth human DNA polymerase. Genomics 59(1):90–96

    Article  CAS  PubMed  Google Scholar 

  54. Shima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC (2003) Phenotype-based identification of mouse chromosome instability mutants. Genetics 163(3):1031–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shima N, Munroe RJ, Schimenti JC (2004) The mouse genomic instability mutation chaos1 is an allele of Polq that exhibits genetic interaction with Atm. Mol Cell Biol 24(23):10381–10389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou J, Gelot C, Pantelidou C, Li A, Yücel H, Davis RE et al (2021) A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat cancer. 2(6):598–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zatreanu D, Robinson HMR, Alkhatib O, Boursier M, Finch H, Geo L et al (2021) Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun 12(1):3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zou L (2007) Single- and double-stranded DNA: building a trigger of ATR-mediated DNA damage response. Genes Dev 21(8):879–885

    Article  CAS  PubMed  Google Scholar 

  59. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Z, Song Y, Li S, Kurian S, Xiang R, Chiba T et al (2019) DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse. J Biol Chem 294(11):3909–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Newman JA, Cooper CDO, Aitkenhead H, Gileadi O (2015) Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure 23(12):2319–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zahn KE, Averill AM, Aller P, Wood RD, Doublié S (2015) Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 22(4):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G et al (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366(15):1382–1392

    Article  CAS  PubMed  Google Scholar 

  64. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A et al (2016) Niraparib Maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375(22):2154–2164

    Article  CAS  PubMed  Google Scholar 

  65. Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ et al (2019) Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 381(4):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y et al (2020) The repertoire of mutational signatures in human cancer. Nature 578(7793):94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramsden DA, Carvajal-Garcia J, Gupta GP (2022) Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 23(2):125–140

    Article  CAS  PubMed  Google Scholar 

  68. Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ, Tiao G et al (2017) A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet 49(10):1476–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19(11):1381–1388

    Article  CAS  PubMed  Google Scholar 

  71. D’Andrea AD (2018) Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 71:172–176

    Article  PubMed  Google Scholar 

  72. Boulton SJ, Jackson SP (1996) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15(18):5093–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kabotyanski EB, Gomelsky L, Han JO, Stamato TD, Roth DB (1998) Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res 26(23):5333–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar RJ, Chao HX, Simpson DA, Feng W, Cho M-G, Roberts VR, et al. Dual inhibition of DNA-PK and DNA polymerase theta overcomes radiation resistance induced by p53 deficiency. NAR Cancer. 2020;2(4):zcaa038.

    Google Scholar 

  75. van Bussel MTJ, Awada A, de Jonge MJA, Mau-Sørensen M, Nielsen D, Schöffski P et al (2021) A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br J Cancer 124(4):728–735

    Article  PubMed  Google Scholar 

  76. Kuei C-H, Lin H-Y, Lin M-H, Lee H-H, Lin C-H, Lee W-J et al (2020) DNA polymerase theta repression enhances the docetaxel responsiveness in metastatic castration-resistant prostate cancer. Biochim Biophys acta Mol basis Dis 1866(12):165954

    Article  CAS  PubMed  Google Scholar 

  77. Pantelidou C, Sonzogni O, De Oliveria TM, Mehta AK, Kothari A, Wang D et al (2019) PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov 9(6):722–737

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ding L, Kim H-J, Wang Q, Kearns M, Jiang T, Ohlson CE et al (2018) PARP inhibition elicits STING-dependent antitumor immunity in brca1-deficient ovarian cancer. Cell Rep 25(11):2972-2980.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pantelidou C, Jadhav H, Kothari A, Liu R, Guerriero JL, Shapiro GI (2021) STING agonism enhances anti-tumor immune responses and therapeutic efficacy of PARP inhibition in BRCA-associated breast cancer. bioRxiv. 2021.01.26.428337

    Google Scholar 

  80. Cheng B, Ren X, Kerppola TK (2014) KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol Cell Biol 34(11):2075–2091

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jardim DL, Fontes Jardim DL, Schwaederle M, Wei C, Lee JJ, Hong DS, et al. Impact of a biomarker-based strategy on oncology drug development: a meta-analysis of clinical trials leading to FDA approval. J Natl Cancer Inst. 2015;107(11).

    Google Scholar 

  82. Schwaederle M, Zhao M, Lee JJ, Lazar V, Leyland-Jones B, Schilsky RL et al (2016) Association of biomarker-based treatment strategies with response rates and progression-free survival in refractory malignant neoplasms: a meta-analysis. JAMA Oncol 2(11):1452–1459

    Article  PubMed  Google Scholar 

  83. Schwaederle M, Zhao M, Lee JJ, Eggermont AM, Schilsky RL, Mendelsohn J et al (2015) Impact of precision medicine in diverse cancers: a meta-analysis of Phase II clinical trials. J Clin Oncol 33(32):3817–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. D’Andrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patterson-Fortin, J., D’Andrea, A.D. (2023). Targeting Polymerase Theta (POLθ) for Cancer Therapy. In: Yap, T.A., Shapiro, G.I. (eds) Targeting the DNA Damage Response for Cancer Therapy. Cancer Treatment and Research, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-031-30065-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30065-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30064-6

  • Online ISBN: 978-3-031-30065-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics