Skip to main content

Oscillations of Double Mathematical Pendulum with Internal Friction

  • Conference paper
  • First Online:
Advances in Mechanical Engineering (MMESE 2022)

Abstract

This paper investigates the oscillations of a double mathematical pendulum with identical parameters of links and end loads under the action of internal friction in both of its rod elements. Dissipative function of internal friction is constructed, which is a quadratic function with respect to the change rates of forces in the double pendulum rods. Mathematical model of small oscillations of the system is obtained, in which dissipative effects have the third order of smallness. An approximate solution of the problem is based on single-frequency and two-frequency averaging methods. This solution makes possible to analyze the fading of system motions under the action of internal friction for both of each oscillation modes separately under the appropriate initial conditions and in the general case with their simultaneous presence in the solution. The obtained results are presented in the form of visual graphic illustrations, and they may be of certain theoretical and practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavrovskii, E.K., Formalskii, A.M.: The optimal control synthesis of the swinging and damping of a double pendulum. J. Appl. Math. Mech. 65(2), 219–227 (2001)

    Article  Google Scholar 

  2. Reshmin, S.A.: Decomposition method in the problem of controlling an inverted double pendulum with the use of one control moment. J. Comput. Syst. Sci. Int. 44(6), 861–877 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Cross, R.: A double pendulum swing experiment: In search of a better bat. Am. J. Phys. 73(4), 330–339 (2005)

    Article  Google Scholar 

  4. Formalskii, A.M.: On stabilization of an inverted double pendulum with one control torque. J. Comput. Syst. Sci. Int. 45(3), 337–344 (2006)

    Article  MathSciNet  Google Scholar 

  5. Stachowiak, T., Okada, T.: A numerical analysis of chaos in the double pendulum. Chaos, Solitons Fractals 29(2), 417–422 (2006)

    Article  MATH  Google Scholar 

  6. Kholostova, O.V.: On the motions of a double pendulum with vibrating suspension point. Mech. Solids 44(2), 184–197 (2009)

    Article  Google Scholar 

  7. Rafat, M., Wheatland, M., Bedding, T.: Dynamics of a double pendulum with distributed mass. Am. J. Phys. 77(3), 216–223 (2009)

    Article  Google Scholar 

  8. Awrejcewicz, J., Wasilewski, G., Kudra, G., Reshmin, S.A.: An experiment with swinging up a double pendulum using feedback control. J. Comput. Syst. Sci. Int. 51(2), 176–182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bulanchuk, P.O., Petrov, A.G.: Suspension point vibration parameters for a given equilibrium of a double mathematical pendulum. Mech. Solids 48(4), 380–387 (2013). https://doi.org/10.3103/S0025654413040043

    Article  Google Scholar 

  10. Maiti, S., Roy, J., Mallik, A.K., Bhattacharjee, J.: Nonlinear dynamics of a rotating double pendulum. Phys. Lett. 380(3), 408–412 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Formalskii, A.M.: Motion Control of Unstable Objects. Fizmatlit, Moscow (2014)

    MATH  Google Scholar 

  12. Andreev, A.S., Peregudova, O.A.: On control for double-link manipulator with elastic joints. Russ. J. Nonlinear Dyn. 11(2), 267–277 (2015)

    MATH  Google Scholar 

  13. Ludwicki, M., Awrejcewicz, J., Kudra, G.: Spatial double physical pendulum with axial excitation: computer simulation and experimental set-up. Int. J. Dyn. Control 3(1), 1–8 (2015). https://doi.org/10.1007/s40435-014-0073-x

    Article  Google Scholar 

  14. Elbori, A., Abdalsmd, L.: Simulation of double pendulum. J. Softw. Eng. Simul. 3(7), 1–13 (2017)

    Google Scholar 

  15. Luo, A.C.J., Guo, C.: A period-1 motion to chaos in a periodically forced, damped, double-pendulum. J. Vib. Test. Syst. Dyn. 3(3), 259–280 (2019)

    Google Scholar 

  16. Smirnov, A.S., Smolnikov, B.A.: Oscillations of double mathematical pendulum with Noncollinear joints. In: Evgrafov, A.N. (ed.) MMESE 2020. LNME, pp. 185–193. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62062-2_18

    Chapter  Google Scholar 

  17. Smirnov, A.S., Smolnikov, B.A.: Collinear control of oscillation modes of spatial double pendulum with variable gain. Cybern. Phys. 10(2), 88–96 (2021)

    Article  Google Scholar 

  18. Smirnov, A.S., Smolnikov, B.A.: Nonlinear oscillation modes of spatial double pendulum. In: Journal of Physics: Conference Series, The International Scientific Conference on Mechanics “The Ninth Polyakhov’s Reading”, (ISCM), 9–12 March 2021, Saint Petersburg, Russian Federation, vol. 1959, pp. 012046. IOP Publishing, Bristol (2021)

    Google Scholar 

  19. Sawant, K.R., Shrikanth, V.: Energy dissipation and behavioral regimes in an autonomous double pendulum subjected to viscous and dry friction damping. Eur. J. Phys. 42(5), 055008 (2021)

    Article  Google Scholar 

  20. Lurie, A.I.: Analytical Mechanics. Springer-Verlag, Berlin, Heidelberg (2002)

    Google Scholar 

  21. Vilnit, L.N.: Differential Equations of Mechanical Systems Motion with Dry Friction. Novosibirsk State Technical University, Novosibirsk (2004)

    Google Scholar 

  22. Smirnov, A.S., Smolnikov, B.A.: Dissipative model of double mathematical pendulum with Noncollinear joints. In: Evgrafov, A.N. (ed.) Advances in Mechanical Engineering. LNME, pp. 38–47. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91553-7_5

    Chapter  Google Scholar 

  23. Bendersky, S., Sandler, B.: Investigation of a spatial double pendulum: an engineering approach. Discrete Dyn. Nature and Soc. 2006, 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smolnikov, B.A., Smirnov, A.S.: String oscillations with internal friction. In: Modern Mechanical Engineering: Science and Education, pp. 192–203. Publishing House of Polytechnical University, Saint Petersburg (2021)

    Google Scholar 

  25. Smolnikov, B.A.: Evolutionary dynamics of pendulum systems. Theory of mechanisms and machines, vol. 6, 1(11), pp. 41–47 (2008)

    Google Scholar 

  26. Smirnov, A.S., Smolnikov, B.A.: On the correspondence of evolutionary and classical models of internal dissipation. In: Week of Science SPbPU. Materials of the Scientific Conference with International Participation. Institute of Applied Mathematics and Mechanics, pp. 142–144. Publishing House of Polytechnical University, Saint Petersburg (2017)

    Google Scholar 

  27. Skubov, D.Yu.: Fundamentals of the Nonlinear Oscillations Theory. Lan’, Saint Petersburg (2013)

    Google Scholar 

  28. Krasilnikov, P.S.: Applied methods for studying nonlinear oscillations. Institute for Computer Research, Moscow, Izhevsk (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Smirnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smirnov, A.S., Smolnikov, B.A. (2023). Oscillations of Double Mathematical Pendulum with Internal Friction. In: Evgrafov, A.N. (eds) Advances in Mechanical Engineering. MMESE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-30027-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30027-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30026-4

  • Online ISBN: 978-3-031-30027-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics