Skip to main content

Cardiorespiratory Changes as They Relate to Sleep in Transition from Pediatric to Adulthood

  • Chapter
  • First Online:
Sleep Medicine
  • 305 Accesses

Abstract

Sleep and the cardiorespiratory system affect each other. This chapter focuses on some aspects of the cardiorespiratory system and their influence on sleep, and some which are affected by sleep, highlighting age-dependent changes in these relationships. The characteristics of the upper airway (UAW) (anatomy and physiology) and their impact on the individual’s susceptibility to have sleep-disordered breathing are described in light of changes from childhood to adulthood. In addition, arousability (cortical/autonomic) and arousal thresholds, which also affect sleep disordered breathing (SDB), and vascular endothelial function which may be affected by SDB, are discussed, with respect to age.

Age-dependent cardiorespiratory changes may affect the phenotype of obstructive sleep apnea (OSA). In children, the most common anatomical risk factors are hypertrophic tonsils and/or adenoids, while in adults, it is obesity. Airway length, which may also alter collapsibility, increases with age. In children, upper airway (UAW) is shorter and is similar between genders, whereas in adolescents and adults, it becomes longer especially in males. UAW dilator muscles respond to negative pressure during wakefulness similarly in children and adults, although it appears that the UAW is more stable in children, who are less likely to collapse than adults. Their collapsing pressure Pclose/Pcrit is more negative than in adults. Transient arousals from sleep, which reestablish the airway patency and ventilation after SDB events, are more likely to occur in adults than in children, in whom frequently there is only autonomic response without a cortical arousal. This may lead to long duration of hypoventilation with hypercapnia seen in children but not in adults. Both children and adults tend to develop endothelial dysfunction (ED) as a complication of OSA, but in children it is more likely to be reversible with treatment, perhaps due to the shorter duration of disease prior to treatment. These age-related changes are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CPAP:

Continuous positive airway pressure

ED:

Endothelial dysfunction

OSA:

Obstructive sleep apnea

SDB:

Sleep-disordered breathing

UAW:

Upper airway

References

  1. Bannink N, Nout E, Wolvius EB, Hoeve HL, Joosten KF, Mathijssen IM. Obstructive sleep apnea in children with syndromic craniosynostosis: long-term respiratory outcome of midface advancement. Int J Oral Maxillofac Surg. 2010;39(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  2. Resnick CM, Middleton JK, Calabrese CE, Ganjawalla K, Padwa BL. Retropalatal cross-sectional area is predictive of obstructive sleep apnea in patients with syndromic craniosynostosis. Cleft Palate Craniofac J. 2020;57(5):560–5. https://doi.org/10.1177/1055665619882571.

    Article  PubMed  Google Scholar 

  3. Poets CF, Koos B, Reinert S, Wiechers C. The Tübingen palatal plate approach to Robin sequence: summary of current evidence. J Craniomaxillofac Surg. 2019;47(11):1699–705. https://doi.org/10.1016/j.jcms.2019.08.002.

    Article  PubMed  Google Scholar 

  4. Johnston C, Taussig LM, Koopmann C, Smith P, Bjelland J. Obstructive sleep apnea in Treacher-Collins syndrome. Cleft Palate J. 1981;18(1):39–44.

    CAS  PubMed  Google Scholar 

  5. Mandell DL, Yellon RF, Bradley JP, Izadi K, Gordon CB. Mandibular distraction for micrognathia and severe upper airway obstruction. Arch Otolaryngol Head Neck Surg. 2004;130(3):344–8.

    Article  PubMed  Google Scholar 

  6. Bravo G, Ysunza A, Arrieta J, Pamplona MC. Videonasopharyngoscopy is useful for identifying children with Pierre Robin sequence and severe obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2005;69(1):27–33.

    Article  PubMed  Google Scholar 

  7. Cohen SR, Simms C, Burstein FD. Mandibular distraction osteogenesis in the treatment of upper airway obstruction in children with craniofacial deformities. Plast Reconstr Surg. 1998;101(2):312–8.

    Article  CAS  PubMed  Google Scholar 

  8. Rachmiel A, Aizenbud D, Pillar G, Srouji S, Peled M. Bilateral mandibular distraction for patients with compromised airway analyzed by three-dimensional CT. Int J Oral Maxillofac Surg. 2005;34(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  9. Iwasaki T, Suga H, Minami-Yanagisawa A, Hashiguchi-Sato M, Sato H, Yamamoto Y, et al. Upper airway in children with unilateral cleft lip and palate evaluated with computational fluid dynamics. Am J Orthod Dentofac Orthop. 2019;156(2):257–65. https://doi.org/10.1016/j.ajodo.2018.09.013.

    Article  Google Scholar 

  10. Dauvilliers Y, Stal V, Abril B, Coubes P, Bobin S, Touchon J, et al. Chiari malformation and sleep related breathing disorders. J Neurol Neurosurg Psychiatry. 2007;78(12):1344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cook SP, Borkowski WJ. Obstructive sleep apnea in Schwartz-Jampel syndrome. Arch Otolaryngol Head Neck Surg. 1997;123(12):1348–50.

    Article  CAS  PubMed  Google Scholar 

  12. Mogayzel PJ Jr, Carroll JL, Loughlin GM, Hurko O, Francomano CA, Marcus CL. Sleep-disordered breathing in children with achondroplasia. J Pediatr. 1998;132(4):667–71.

    Article  PubMed  Google Scholar 

  13. Zaffanello M, Cantalupo G, Piacentini G, Gasperi E, Nosetti L, Cavarzere P, et al. Sleep disordered breathing in children with achondroplasia. World J Pediatr. 2017;13(1):8–14. https://doi.org/10.1007/s12519-016-0051-9. Epub 2016 Oct 15. PMID: 27830579.

    Article  PubMed  Google Scholar 

  14. de Miguel-Diez J, Alvarez-Sala JL, Villa-Asensi JR. Magnetic resonance imaging of the upper airway in children with Down syndrome. Am J Respir Crit Care Med. 2002;165(8):1187; author reply 1187.

    Article  PubMed  Google Scholar 

  15. Donaldson JD, Redmond WM. Surgical management of obstructive sleep apnea in children with Down syndrome. J Otolaryngol. 1988;17(7):398–403.

    CAS  PubMed  Google Scholar 

  16. Jacobs IN, Gray RF, Todd NW. Upper airway obstruction in children with Down syndrome. Arch Otolaryngol Head Neck Surg. 1996;122(9):945–50.

    Article  CAS  PubMed  Google Scholar 

  17. de Moura CP, Andrade D, Cunha LM, Tavares MJ, Cunha MJ, Vaz P, et al. Down syndrome: otolaryngological effects of rapid maxillary expansion. J Laryngol Otol. 2008;122(12):1318–24.

    Article  PubMed  Google Scholar 

  18. Wing YK, Hui SH, Pak WM, Ho CK, Cheung A, Fok TF. A controlled study of sleep related disordered breathing in obese children. Arch Dis Child. 2003;88:1043–7. https://doi.org/10.1136/adc.88.12.1043. PubMed: 14670764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tagaya M, Nakata S, Yasuma F, Miyazaki S, Sasaki F, Morinaga M, et al. Relationship between adenoid size and severity of obstructive sleep apnea in preschool children. Int J Pediatr Otorhinolaryngol. 2012;76(12):1827–30. https://doi.org/10.1016/j.ijporl.2012.09.010. Epub 2012 Sep 27. PMID: 23021529.

    Article  PubMed  Google Scholar 

  20. Dayyat E, Kheirandish-Gozal L, Sans Capdevila O, Maarafeya MM, Gozal D. Obstructive sleep apnea in children: relative contributions of body mass index and adenotonsillar hypertrophy. Chest. 2009;136:137–44. https://doi.org/10.1378/chest.08-2568. PubMed: 19225059.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arens R, Muzumdar H. Childhood obesity and obstructive sleep apnea syndrome. J Appl Physiol. 2010;108(2):436–44.

    Article  PubMed  Google Scholar 

  22. Ramos RT, Salles C, Gregorio PB, Barros AT, Santana A, Araújo-Filho JB, et al. Evaluation of the upper airway in children and adolescents with cystic fibrosis and obstructive sleep apnea syndrome. Int J Pediatr Otorhinolaryngol. 2009;73(12):1780–5.

    Article  PubMed  Google Scholar 

  23. Arens R, McDonough JM, Corbin AM, Rubin NK, Carroll ME, Pack AI, et al. Upper airway size analysis by magnetic resonance imaging of children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2003;167(1):65–70.

    Article  PubMed  Google Scholar 

  24. Isono S, Shimada A, Utsugi M, Konno A, Nishino T. Comparison of static mechanical properties of the passive pharynx between normal children and children with sleep-disordered breathing. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1204–12.

    Article  CAS  PubMed  Google Scholar 

  25. Arens R, McDonough JM, Costarino AT, Mahboubi S, Tayag-Kier CE, Maislin G, et al. Magnetic resonance imaging of the upper airway structure of children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2001;164(4):698–703.

    Article  CAS  PubMed  Google Scholar 

  26. Kohler MJ, Lushington K, van den Heuvel CJ, Martin J, Pamula Y, Kennedy D. Adenotonsillectomy and neurocognitive deficits in children with Sleep Disordered Breathing. PLoS One. 2009;4(10):e7343.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Choi JH, Kim EJ, Choi J, Kim TH, Kwon SY, Lee SH, et al. The effect of adenotonsillectomy on changes of position during sleep in pediatric obstructive sleep apnea syndrome. Am J Rhinol Allergy. 2009;23(6):56–8.

    Article  Google Scholar 

  28. Conley SF, Beecher RB, Delaney AL, Norins NA, Simpson PM, Li SH. Outcomes of tonsillectomy in neurologically impaired children. Laryngoscope. 2009;119(11):2231–41.

    Article  PubMed  Google Scholar 

  29. Robb PJ, Bew S, Kubba H, Murphy N, Primhak R, Rollin AM, Tremlett M. Tonsillectomy and adenoidectomy in children with sleep-related breathing disorders: consensus statement of a UK multidisciplinary working party. Ann R Coll Surg Engl. 2009;91(5):371–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedman M, Wilson M, Lin HC, Chang HW. Updated systematic review of tonsillectomy and adenoidectomy for treatment of pediatric obstructive sleep apnea/hypopnea syndrome. Otolaryngol Head Neck Surg. 2009;140(6):800–8.

    Article  PubMed  Google Scholar 

  31. Greenfeld M, Tauman R, DeRowe A, Sivan Y. Obstructive sleep apnea syndrome due to adenotonsillar hypertrophy in infants. Int J Pediatr Otorhinolaryngol. 2003;67(10):1055–60.

    Article  PubMed  Google Scholar 

  32. Browne JJ, Matthews EH, Taylor-Robinson AW, Kyd JM. Regulatory T lymphocytes are associated with increased nasopharyngeal colonization in children. Int J Pediatr Otorhinolaryngol. 2019;120:51–7. https://doi.org/10.1016/j.ijporl.2019.02.011. Epub 2019 Feb 5. PMID: 30771553.

    Article  PubMed  Google Scholar 

  33. Rout MR, Mohanty D, Vijaylaxmi Y, Bobba K, Metta C. Adenoid hypertrophy in adults: a case series. Indian J Otolaryngol Head Neck Surg. 2013;65(3):269–74.

    Article  PubMed  Google Scholar 

  34. Mattila PS, Nykänen A, Eloranta M, Tarkkanen J. Adenoids provide a microenvironment for the generation of CD4(+), CD45RO(+), L-selectin(-), CXCR4(+), CCR5(+) T lymphocytes, a lymphocyte phenotype found in the middle ear effusion. Int Immunol. 2000;12(9):1235–43. https://doi.org/10.1093/intimm/12.9.1235. PMID: 10967018.

    Article  CAS  PubMed  Google Scholar 

  35. Stenner M, Rudack C. Diseases of the nose and paranasal sinuses in child. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2014;13:10.

    Google Scholar 

  36. Harris JA, Jackson CM, Paterson DG, Scammon SE. Te measurement of the body in childhood in Te measurement of man. Minneapolis: University of Minnesota Press; 1930.

    Google Scholar 

  37. Pruzansky S. Roentgencephalometric studies of tonsils and adenoids in normal and pathologic states. Ann Otol Rhinol Laryngol. 1975;84(Supp. 19):55–62.

    Article  CAS  PubMed  Google Scholar 

  38. Ishida T, Manabe A, Yang SS, Yoon HS, Kanda E, Ono T. Patterns of adenoid and tonsil growth in Japanese children and adolescents: a longitudinal study. Sci Rep. 2018;8(1):17088. https://doi.org/10.1038/s41598-018-35272-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chuang HH, Hsu JF, Chuang LP, Chen NH, Huang YS, Li HY, et al. Differences in anthropometric and clinical features among preschoolers, school-age children, and adolescents with obstructive sleep apnea-a hospital-based study in Taiwan. Int J Environ Res Public Health. 2020;17(13):4663. https://doi.org/10.3390/ijerph17134663. PMID: 32610444; PMCID: PMC7370095.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cohen O, Betito HR, Adi M, Shapira-Galitz Y, Halperin D, Lahav Y, Warman M. Development of the nasopharynx: a radiological study of children. Clin Anat. 2020;33(7):1019–24. https://doi.org/10.1002/ca.23530. Epub 2019 Dec 9. PMID: 31769106.

    Article  PubMed  Google Scholar 

  41. Arens R, McDonough JM, Corbin AM, Hernandez ME, Maislin G, Schwab RJ, Pack AI. Linear dimensions of the upper airway structure during development: assessment by magnetic resonance imaging. Am J Respir Crit Care Med. 2002;165(1):117–22. https://doi.org/10.1164/ajrccm.165.1.2107140. PMID: 11779740.

    Article  PubMed  Google Scholar 

  42. Schwab RJ, Kim C, Bagchi S, Keenan BT, Comyn FL, Wang S, et al. Understanding the anatomic basis for obstructive sleep apnea syndrome in adolescents. Am J Respir Crit Care Med. 2015;191(11):1295–309. https://doi.org/10.1164/rccm.201501-0169OC. PMID: 25835282; PMCID: PMC4476519.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tschopp S, Tschopp K. Tonsil size and outcome of uvulopalatopharyngoplasty with tonsillectomy in obstructive sleep apnea. Laryngoscope. 2019;129(12):E449–54. https://doi.org/10.1002/lary.27899. Epub 2019 Mar 8. PMID: 30848478.

    Article  PubMed  Google Scholar 

  44. Smith MM, Peterson E, Yaremchuk KL. The role of tonsillectomy in adults with tonsillar hypertrophy and obstructive sleep apnea. Otolaryngol Head Neck Surg. 2017;157(2):331–5. https://doi.org/10.1177/0194599817698671. Epub 2017 Mar 28. PMID: 28349770.

    Article  PubMed  Google Scholar 

  45. Holmlund T, Franklin KA, Levring Jäghagen E, Lindkvist M, Larsson T, Sahlin C, Berggren D. Tonsillectomy in adults with obstructive sleep apnea. Laryngoscope. 2016;126(12):2859–62. https://doi.org/10.1002/lary.26038. PMID: 27107408.

    Article  PubMed  Google Scholar 

  46. Jara SM, Weaver EM. Association of palatine tonsil size and obstructive sleep apnea in adults. Laryngoscope. 2018;128(4):1002–6. https://doi.org/10.1002/lary.26928. Epub 2017 Dec 5. PMID: 29205391; PMCID: PMC5867223.

    Article  PubMed  Google Scholar 

  47. Malhotra A, Huang Y, Fogel RB, Pillar G, Edwards JK, Kikinis R, et al. The male predisposition to pharyngeal collapse: importance of airway length. Am J Respir Crit Care Med. 2002;166(10):1388–95.

    Article  PubMed  Google Scholar 

  48. Ronen O, Malhotra A, Pillar G. Influence of gender and age on upper-airway length during development. Pediatrics. 2007;120(4):e1028–34.

    Article  PubMed  Google Scholar 

  49. Segal Y, Malhotra A, Pillar G. Upper airway length may be associated with the severity of obstructive sleep apnea syndrome. Sleep Breath. 2008;12(4):311–6.

    Article  PubMed  Google Scholar 

  50. Dentino K, Ganjawalla K, Inverso G, Mulliken JB, Padwa BL. Upper airway length is predictive of obstructive sleep apnea in syndromic craniosynostosis. J Oral Maxillofac Surg. 2015;73(12 Suppl):S20–5. https://doi.org/10.1016/j.joms.2015.04.017. PMID: 26608151.

    Article  PubMed  Google Scholar 

  51. Lin H, Xiong H, Ji C, Wang C, Li Y, An Y, et al. Upper airway lengthening caused by weight increase in obstructive sleep apnea patients. Respir Res. 2020;21(1):272. https://doi.org/10.1186/s12931-020-01532-8. PMID: 33076908; PMCID: PMC7574450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sutherland K, Lee RW, Phillips CL, Dungan G, Yee BJ, Magnussen JS, et al. Effect of weight loss on upper airway size and facial fat in men with obstructive sleep apnoea. Thorax. 2011;66:797–803.

    Article  PubMed  Google Scholar 

  53. Marcus CL, Katz ES, Lutz J, Black CA, Galster P, Carson KA. Upper airway dynamic responses in children with the obstructive sleep apnea syndrome. Pediatr Res. 2005;57(1):99–107.

    Article  PubMed  Google Scholar 

  54. Gozal D, Burnside MM. Increased upper airway collapsibility in children with obstructive sleep apnea during wakefulness. Am J Respir Crit Care Med. 2004;169(2):163–7.

    Article  PubMed  Google Scholar 

  55. Katz ES, Marcus CL, White DP. Influence of airway pressure on genioglossus activity during sleep in normal children. Am J Respir Crit Care Med. 2006;173(8):902–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Katz ES, White DP. Genioglossus activity in children with obstructive sleep apnea during wakefulness and sleep onset. Am J Respir Crit Care Med. 2003;168(6):664–70.

    Article  PubMed  Google Scholar 

  57. Marcus CL, McColley SA, Carroll JL, Loughlin GM, Smith PL, Schwartz AR. Upper airway collapsibility in children with obstructive sleep apnea syndrome. J Appl Physiol. 1994;77(2):918–24.

    Article  CAS  PubMed  Google Scholar 

  58. Mezzanotte WS, Tangel DJ, White DP. Mechanisms of control of alae nasi muscle activity. J Appl Physiol. 1992;72(3):925–33.

    Article  CAS  PubMed  Google Scholar 

  59. Fogel RB, Malhotra A, Pillar G, Edwards JK, Beauregard J, Shea SA, White DP. Genioglossal activation in patients with obstructive sleep apnea versus control subjects. Mechanisms of muscle control. Am J Respir Crit Care Med. 2001;164(11):2025–30.

    Article  CAS  PubMed  Google Scholar 

  60. Malhotra A, Pillar G, Fogel RB, Beauregard J, Edwards JK, Slamowitz DI, et al. Genioglossal but not palatal muscle activity relates closely to pharyngeal pressure. Am J Respir Crit Care Med. 2000;162(3):1058–62. https://doi.org/10.1164/ajrccm.162.3.9912067. PMID: 10988130.

    Article  CAS  PubMed  Google Scholar 

  61. Fogel RB, Trinder J, Malhotra A, Stanchina M, Edwards JK, Schory KE, White DP. Within-breath control of genioglossal muscle activation in humans: effect of sleep-wake state. J Physiol. 2003;550(Pt 3):899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sforza E, Petiau C, Weiss T, Thibault A, Krieger J. Pharyngeal critical pressure in patients with obstructive sleep apnea syndrome. Clinical implications. Am J Respir Crit Care Med. 1999;159(1):149–57.

    Article  CAS  PubMed  Google Scholar 

  63. Malhotra A, Pillar G, Fogel R, Beauregard J, Edwards J, White DP. Upper-airway collapsibility: measurements and sleep effects. Chest. 2001;120(1):156–61.

    Article  CAS  PubMed  Google Scholar 

  64. Malhotra A, Pillar G, Fogel RB, Edwards JK, Ayas N, Akahoshi T, et al. Pharyngeal pressure and flow effects on genioglossus activation in normal subjects. Am J Respir Crit Care Med. 2002;165(1):71–7.

    Article  PubMed  Google Scholar 

  65. Pillar G, Fogel RB, Malhotra A, Beauregard J, Edwards JK, Shea SA, White DP. Genioglossal inspiratory activation: central respiratory vs mechanoreceptive influences. Respir Physiol. 2001;127(1):23–38. https://doi.org/10.1016/s0034-5687(01)00230-4. PMID: 11445198; PMCID: PMC4372894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wheatley JR, Tangel DJ, Mezzanotte WS, White DP. Influence of sleep on response to negative airway pressure of tensor palatini muscle and retropalatal airway. J Appl Physiol. 1993;75(5):2117–24.

    Article  CAS  PubMed  Google Scholar 

  67. Wheatley JR, Mezzanotte WS, Tangel DJ, White DP. Influence of sleep on genioglossus muscle activation by negative pressure in normal men. Am Rev Respir Dis. 1993;148(3):597–605.

    Article  CAS  PubMed  Google Scholar 

  68. Shea SA, Edwards JK, White DP. Effect of wake-sleep transitions and rapid eye movement sleep on pharyngeal muscle response to negative pressure in humans. J Physiol. 1999;520(Pt 3):897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Issa FG, Sullivan CE. Upper airway closing pressures in snorers. J Appl Physiol. 1984;57(2):528–35.

    Article  CAS  PubMed  Google Scholar 

  70. Issa FG, Sullivan CE. Upper airway closing pressures in obstructive sleep apnea. J Appl Physiol. 1984;57(2):520–7.

    Article  CAS  PubMed  Google Scholar 

  71. Smith PL, Wise RA, Gold AR, Schwartz AR, Permutt S. Upper airway pressure-flow relationships in obstructive sleep apnea. J Appl Physiol. 1988;64(2):789–95.

    Article  CAS  PubMed  Google Scholar 

  72. Jordan AS, Wellman A, Edwards JK, Schory K, Dover L, MacDonald M, et al. Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. J Appl Physiol. 2005;99(5):2020–7.

    Article  PubMed  Google Scholar 

  73. Schwartz AR, Smith PL, Wise RA, Bankman I, Permutt S. Effect of positive nasal pressure on upper airway pressure-flow relationships. J Appl Physiol. 1989;66(4):1626–34.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz AR, Smith PL, Wise RA, Gold AR, Permutt S. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J Appl Physiol. 1988;64(2):535–42.

    Article  CAS  PubMed  Google Scholar 

  75. Gleadhill IC, Schwartz AR, Schubert N, Wise RA, Permutt S, Smith PL. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am Rev Respir Dis. 1991;143(6):1300–3.

    Article  CAS  PubMed  Google Scholar 

  76. Osman AM, Carberry JC, Burke PGR, Toson B, Grunstein RR, Eckert DJ. Upper airway collapsibility measured using a simple wakefulness test closely relates to the pharyngeal critical closing pressure during sleep in obstructive sleep apnea. Sleep. 2019;42(7):zsz080.

    Article  PubMed  Google Scholar 

  77. Marcus CL, Fernandes Do Prado LB, Lutz J, Katz ES, Black CA, Galster P, Carson KA. Developmental changes in upper airway dynamics. J Appl Physiol. 2004;97:98–108.

    Article  PubMed  Google Scholar 

  78. Huang J, Pinto SJ, Yuan H, Katz ES, Karamessinis LR, Bradford RM, et al. Upper airway collapsibility and genioglossus activity in adolescents during sleep. Sleep. 2012;35(10):1345–52. https://doi.org/10.5665/sleep.2110. PMID: 23024432; PMCID: PMC3443760.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Liang J, Cade BE, Wang H, Chen H, Gleason KJ, Larkin EK, et al. Comparison of heritability estimation and linkage analysis for multiple traits using principal component analyses. Genet Epidemiol. 2016;40:222–32.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sands SA, Terrill PI, Edwards BA, Taranto Montemurro L, Azarbarzin A, Marques M, et al. Quantifying the arousal threshold using polysomnography in obstructive sleep apnea. Sleep. 2018;41:183.

    Article  Google Scholar 

  81. Cade BE, Chen H, Stilp AM, Gleason KJ, Sofer T, Ancoli-Israel S, et al. Genetic associations with obstructive sleep apnea traits in Hispanic/Latino Americans. Am J Respir Crit Care Med. 2016;194:886–97.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Butler MP, Emch JT, Rueschman M, Sands SA, Shea SA, Wellman A, Redline S. Apnea-hypopnea event duration predicts mortality in men and women in the sleep heart health study. Am J Respir Crit Care Med. 2019;199(7):903–12. https://doi.org/10.1164/rccm.201804-0758OC. PMID: 30336691; PMCID: PMC6444651.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Horne RS, Andrew S, Mitchell K, Sly DJ, Cranage SM, Chau B, Adamson TM. Apnoea of prematurity and arousal from sleep. Early Hum Dev. 2001;61(2):119–33. https://doi.org/10.1016/s0378-3782(00)00129-8. PMID: 11223274.

    Article  CAS  PubMed  Google Scholar 

  84. Findji F, Catani P, Liard C. Topographical distribution of delta rhythms during sleep: evolution with age. Electroencephalogr Clin Neurophysiol. 1981;51(6):659–65. https://doi.org/10.1016/0013-4694(81)90210-8. PMID: 6165567.

    Article  CAS  PubMed  Google Scholar 

  85. Feinberg I, Higgins LM, Khaw WY, Campbell IG. The adolescent decline of NREM delta, an indicator of brain maturation, is linked to age and sex but not to pubertal stage. Am J Physiol Regul Integr Comp Physiol. 2006;291(6):1724–9. https://doi.org/10.1152/ajpregu.00293.2006. Epub 2006 Jul 20. PMID: 16857890; PMCID: PMC2730182.

    Article  CAS  Google Scholar 

  86. Tarokh L, Carskadon MA. Developmental changes in the human sleep EEG during early adolescence. Sleep. 2010;33(6):801–9. https://doi.org/10.1093/sleep/33.6.801. PMID: 20550021; PMCID: PMC2881533.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Marcus CL, Lutz J, Carroll JL, Bamford O. Arousal and ventilatory responses during sleep in children with obstructive sleep apnea. J Appl Physiol. 1998;84(6):1926–36. https://doi.org/10.1152/jappl.1998.84.6.1926. PMID: 9609786.

    Article  CAS  PubMed  Google Scholar 

  88. McNamara F, Issa FG, Sullivan CE. Arousal pattern following central and obstructive breathing abnormalities in infants and children. J Appl Physiol. 1996;81:2651–7.

    Article  CAS  PubMed  Google Scholar 

  89. Tauman R, O'Brien LM, Mast BT, Holbrook CR, Gozal D. Peripheral arterial tonometry events and electroencephalographic arousals in children. Sleep. 2004;27(3):502–6. https://doi.org/10.1093/sleep/27.3.502. PMID: 15164906.

    Article  PubMed  Google Scholar 

  90. O'Brien LM, Gozal D. Potential usefulness of noninvasive autonomic monitoring in recognition of arousals in normal healthy children. J Clin Sleep Med. 2007;3(1):41–7. PMID: 17557452.

    PubMed  Google Scholar 

  91. Gozal D, Hakim F, Kheirandish-Gozal L. Chemoreceptors, baroreceptors, and autonomic deregulation in children with obstructive sleep apnea. Respir Physiol Neurobiol. 2013;185(1):177–85. https://doi.org/10.1016/j.resp.2012.08.019. Epub 2012 Aug 29. PMID: 22954503; PMCID: PMC3513509.

    Article  CAS  PubMed  Google Scholar 

  92. Bandla HP, Gozal D. Dynamic changes in EEG spectra during obstructive apnea in children. Pediatr Pulmonol. 2000;29(5):359–65. https://doi.org/10.1002/(sici)1099-0496(200005)29:5<359::aid-ppul4>3.0.co;2-o. PMID: 10790247.

    Article  CAS  PubMed  Google Scholar 

  93. American Thoracic Society. Standards and indications for cardiopulmonary sleep studies in children. Am J Respir Crit Care Med. 1996;153:866–78.

    Article  Google Scholar 

  94. Redline S, Budhiraja R, Kapur V, Marcus CL, Mateika JH, Mehra R, et al. The scoring of respiratory events in sleep: reliability and validity. J Clin Sleep Med. 2007;3(2):169–200. PMID: 17557426.

    Article  PubMed  Google Scholar 

  95. Grote L, Zou D, Kraiczi H, Hedner J. Finger plethysmography–a method for monitoring finger blood flow during sleep disordered breathing. Respir Physiol Neurobiol. 2003;136(2-3):141–52. https://doi.org/10.1016/s1569-9048(03)00090-9. PMID: 12853006.

    Article  PubMed  Google Scholar 

  96. Pillar G, Bar A, Betito M, Schnall RP, Dvir I, Sheffy J, Lavie P. An automatic ambulatory device for detection of AASM defined arousals from sleep: the WP100. Sleep Med. 2003;4(3):207–12. https://doi.org/10.1016/s1389-9457(02)00254-x. PMID: 14592323.

    Article  PubMed  Google Scholar 

  97. Pillar G, Bar A, Shlitner A, Schnall R, Shefy J, Lavie P. Autonomic arousal index: an automated detection based on peripheral arterial tonometry. Sleep. 2002;25(5):543–9. PMID: 12150321.

    Article  PubMed  Google Scholar 

  98. Younes M. Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med. 2004;169(5):623–33.

    Article  PubMed  Google Scholar 

  99. Onal E, Burrows DL, Hart RH, Lopata M. Induction of periodic breathing during sleep causes upper airway obstruction in humans. J Appl Physiol. 1986;61(4):1438–43.

    Article  CAS  PubMed  Google Scholar 

  100. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188:996–1004. https://doi.org/10.1164/rccm.201303-0448OC.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Younes M, Ostrowski M, Thompson W, Leslie C, Shewchuk W. Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2001;163(5):1181–90.

    Article  CAS  PubMed  Google Scholar 

  102. Deacon-Diaz N, Malhotra A. Inherent vs. induced loop gain abnormalities in obstructive sleep apnea. Front Neurol. 2018;9:896. https://doi.org/10.3389/fneur.2018.00896.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Marcus CL. Obstructive sleep apnea syndrome: differences between children and adults. Sleep. 2000;23(4):140–1.

    Google Scholar 

  104. Gozal D, Arens R, Omlin KJ, Ben-Ari JH, Aljadeff G, Harper RM, Keens TG. Ventilatory response to consecutive short hypercapnic challenges in children with obstructive sleep apnea. J Appl Physiol. 1995;79(5):1608–14.

    Article  CAS  PubMed  Google Scholar 

  105. Gozal D, Torres JE, Menendez AA. Longitudinal assessment of hypercapnic ventilatory drive after tracheotomy in a patient with the Prader-Willi syndrome. Eur Respir J. 1996;9(7):1565–8.

    Article  CAS  PubMed  Google Scholar 

  106. Marcus CL, Gozal D, Arens R, Basinski DJ, Omlin KJ, Keens TG, Ward SL. Ventilatory responses during wakefulness in children with obstructive sleep apnea. Am J Respir Crit Care Med. 1994;149(3):715–21.

    Article  CAS  PubMed  Google Scholar 

  107. Rapoport DM, Garay SM, Epstein H, Goldring RM. Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the “Pickwickian syndrome”. Chest. 1986;89(5):627–35.

    Article  CAS  PubMed  Google Scholar 

  108. He Z, Armoni Domany K, Nava-Guerra L, Khoo MCK, DiFrancesco M, Xu Y, et al. Phenotype of ventilatory control in children with moderate to severe persistent asthma and obstructive sleep apnea. Sleep. 2019;2019:130.

    Article  Google Scholar 

  109. Deacon-Diaz NL, Sands SA, McEvoy RD, Catcheside PG. Daytime loop gain is elevated in obstructive sleep apnea but not reduced by CPAP treatment. J Appl Physiol. 2018;125(5):1490–7. https://doi.org/10.1152/japplphysiol.00175.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Asyali MH, Berry RB, Khoo MC. Assessment of closed-loop ventilatory stability in obstructive sleep apnea. IEEE Trans Biomed Eng. 2002;49(3):206–16.

    Article  PubMed  Google Scholar 

  111. White DP. Pathogenesis of obstructive and central sleep apnea. Am J Respir Crit Care Med. 2005;172(11):1363–70.

    Article  PubMed  Google Scholar 

  112. Li Y, Ye J, Han D, Zhao D, Cao X, Orr J, et al. Upper airway surgery on loop gain in obstructive sleep apnea. J Clin Sleep Med. 2019;15(6):907–13. https://doi.org/10.5664/jcsm.7848.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wellman A, Jordan AS, Malhotra A, Fogel RB, Katz ES, Schory K, et al. Ventilatory control and airway anatomy in obstructive sleep apnea. Am J Respir Crit Care Med. 2004;170(11):1225–32.

    Article  PubMed  Google Scholar 

  114. Gleeson K, Zwillich CW, White DP. Chemosensitivity and the ventilatory response to airflow obstruction during sleep. J Appl Physiol. 1989;67(4):1630–7.

    Article  CAS  PubMed  Google Scholar 

  115. Gleeson K, Zwillich CW, White DP. The influence of increasing ventilatory effort on arousal from sleep. Am Rev Respir Dis. 1990;142(2):295–300.

    Article  CAS  PubMed  Google Scholar 

  116. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. Circulation. 2008;118(10):1080–111.

    Article  PubMed  Google Scholar 

  117. Itzhaki S, Lavie L, Pillar G, Tal G, Lavie P. Endothelial dysfunction in obstructive sleep apnea measured by peripheral arterial tone response in the finger to reactive hyperemia. Sleep. 2005;28(5):594–600.

    Article  PubMed  Google Scholar 

  118. Kato M, Roberts-Thomson P, Phillips BG, Haynes WG, Winnicki M, Accurso V, Somers VK. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation. 2000;102(21):2607–10.

    Article  CAS  PubMed  Google Scholar 

  119. Oflaz H, Cuhadaroglu C, Pamukcu B, Meric M, Ece T, Kasikcioglu E, Koylan N. Endothelial function in patients with obstructive sleep apnea syndrome but without hypertension. Respiration. 2006;73(6):751–6.

    Article  PubMed  Google Scholar 

  120. Gozal D, Kheirandish-Gozal L, Serpero LD, Sans Capdevila O, Dayyat E. Obstructive sleep apnea and endothelial function in school-aged nonobese children: effect of adenotonsillectomy. Circulation. 2007;116(20):2307–14.

    Article  PubMed  Google Scholar 

  121. Bhattacharjee R, Alotaibi WH, Kheirandish-Gozal L, Capdevila OS, Gozal D. Endothelial dysfunction in obese non-hypertensive children without evidence of sleep disordered breathing. BMC Pediatr. 2010;10:8.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kim J, Bhattacharjee R, Kheirandish-Gozal L, Spruyt K, Gozal D. Circulating microparticles in children with sleep disordered breathing. Chest. 2011;140(2):408–17.

    Article  CAS  PubMed  Google Scholar 

  123. Bhattacharjee R, Kim J, Alotaibi WH, Kheirandish-Gozal L, Capdevila OS, Gozal D. Endothelial dysfunction in children without hypertension: potential contributions of obesity and obstructive sleep apnea. Chest. 2012;141(3):682–91.

    Article  PubMed  Google Scholar 

  124. Kheirandish-Gozal L, Bhattacharjee R, Kim J, Clair HB, Gozal D. Endothelial progenitor cells and vascular dysfunction in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2010;182(1):92–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang F, Wu Y, Feng G, Ni X, Xu Z, Gozal D. Polysomnographic correlates of endothelial function in children with obstructive sleep apnea. Sleep Med. 2018;52:45–50. https://doi.org/10.1016/j.sleep.2018.07.023. Epub 2018 Aug 22. PMID: 30269047.

    Article  PubMed  Google Scholar 

  126. Itzhaki S, Dorchin H, Clark GT, Lavie L, Lavie P, Pillar G. The effects of one-year treatment with a Herbst mandibular advancement splint on obstructive sleep apnea, oxidative stress and endothelial function. Chest. 2007;131:740–9.

    Article  PubMed  Google Scholar 

  127. Kheirandish-Gozal L, Etzioni T, Bhattacharjee R, Tan HL, Samiei A, Molero Ramirez H, et al. Obstructive sleep apnea in children is associated with severity-dependent deterioration in overnight endothelial function. Sleep Med. 2013;14(6):526–31. https://doi.org/10.1016/j.sleep.2013.02.010. Epub 2013 May 3. PMID: 23643649.

    Article  PubMed  Google Scholar 

  128. Khalyfa A, Kheirandish-Gozal L, Khalyfa AA, Philby MF, Alonso-Álvarez ML, Mohammadi M, et al. Circulating plasma extracellular microvesicle microRNA cargo and endothelial dysfunction in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2016;194(9):1116–26. https://doi.org/10.1164/rccm.201602-0323OC. PMID: 27163713; PMCID: PMC5114451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kheirandish-Gozal L, Philby MF, Qiao Z, Khalyfa A, Gozal D. Endothelial dysfunction in children with obstructive sleep apnea is associated with elevated lipoprotein-associated phospholipase A2 plasma activity levels. J Am Heart Assoc. 2017;6(2):e004923. https://doi.org/10.1161/JAHA.116.004923. PMID: 28183716; PMCID: PMC5523777.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Imes CC, Baniak LM, Choi J, Luyster FS, Morris JL, Ren D, Chasens ER. Correlates of endothelial function in older adults with untreated obstructive sleep apnea and cardiovascular disease. J Cardiovasc Nurs. 2019;34(1):E1–7. https://doi.org/10.1097/JCN.0000000000000536. PMID: 30303893; PMCID: PMC6311347.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yamamoto U, Nishizaka M, Tsuda H, Tsutsui H, Ando SI. Crossover comparison between CPAP and mandibular advancement device with adherence monitor about the effects on endothelial function, blood pressure and symptoms in patients with obstructive sleep apnea. Heart Vessel. 2019;34(10):1692–702. https://doi.org/10.1007/s00380-019-01392-3. Epub 2019 Mar 29. PMID: 30927057.

    Article  Google Scholar 

  132. Bakker JP, Baltzis D, Tecilazich F, Chan RH, Manning WJ, Neilan TG, et al. The effect of continuous positive airway pressure on vascular function and cardiac structure in diabetes and sleep apnea. a randomized controlled trial. Ann Am Thorac Soc. 2020;17(4):474–83. https://doi.org/10.1513/AnnalsATS.201905-378OC. PMID: 31922899; PMCID: PMC7175977.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Xu H, Wang Y, Guan J, Yi H, Yin S. Effect of CPAP on endothelial function in subjects with obstructive sleep apnea: a meta-analysis. Respir Care. 2015;60(5):749–55. https://doi.org/10.4187/respcare.03739. Epub 2015 Apr 14. PMID: 25873742.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Pillar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pillar, G. (2023). Cardiorespiratory Changes as They Relate to Sleep in Transition from Pediatric to Adulthood. In: Sharafkhaneh, A., Gozal, D. (eds) Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-30010-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30010-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30009-7

  • Online ISBN: 978-3-031-30010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics