Skip to main content

Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification

  • Conference paper
  • First Online:
Design and Architecture for Signal and Image Processing (DASIP 2023)

Abstract

Hyperspectral imaging approaches have proven its effectiveness in the medical field for characterizing brain tissues. Furthermore, these techniques in conjunction with machine learning (ML) algorithms has shown to be a useful tool for tumor detection in order to assist neurosurgeons in operations. In this report, it is proposed a novel deep recurrent neural network (DRNN) performing spectral recurrence with the hyperspectral bands to increase precision in tissue classification. In addition, this research present a comparison between the optimized models of the followings ML algorithms: support vector machine, random forest (RF) and the DRNN. All of them were trained by following an hyperparameter optimization process. As a result, DRNN improve brain tissue predictions in terms of the area under the receiver operating characteristic objective test metric (by 1.39% over SVM and 1.91% over RF) whereas RF classification maps illustrate truthfully the distribution of different tissue regions.

This work was supported by the Spanish Government through TALENT-HIPSTER project (PID2020-116417RB-C41).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraus, G.E., et al.: A technique utilizing positron emission tomography and magnetic resonance/computed tomography image fusion to aid in surgical navigation and tumor volume determination. J. Image Guid. Surg., vol. 1, pp. 300–307 (1995). https://doi.org/10.1002/(SICI)1522-712X(1995)1:6<300::AID-IGS2>3.0.CO;2-E

  2. ElMasry, G., Sun, D.W.: Principles of hyperspectral imaging technology. In: Hyperspectral Imaging for Food Quality Analysis and Control. Academic Press, p. 3–43 (2010). https://doi.org/10.1016/B978-0-12-374753-2.10001-2

  3. Urbanos, G., et al.: Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification. Sensors 21(11), 3827 (2021). https://doi.org/10.3390/s21113827

    Article  Google Scholar 

  4. Zhou, Y., et al.: Holistic brain tumor screening and classification based on DenseNet and recurrent neural network. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 208–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_21

    Chapter  Google Scholar 

  5. Mou, L., Ghamisi, P., Zhu, X.X.: deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 . https://doi.org/10.1109/TGRS.2016.2636241

  6. Martín-Pérez, A., et al.: Hyperparameter optimization for brain tumor classification with hyperspectral images. In: 2022 25th Euromicro Conference on Digital System Design (DSD) (2022). https://doi.org/10.1109/DSD57027.2022.00117

  7. Bengs, M., et al.: Spectral-spatial recurrent-convolutional networks for In-Vivo hyperspectral tumor type classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 690–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_66

    Chapter  Google Scholar 

  8. Ayaz, H., et al.: Hyperspectral imaging for minced meat classification using nonlinear deep features. Appl. Sci. 10, 7783 (2020). https://doi.org/10.3390/app10217783

    Article  Google Scholar 

  9. Knospe, L., et al.: New intraoperative imaging tools and image-guided surgery in gastric cancer surgery. Diagnostics 12, 507 (2022). https://doi.org/10.3390/diagnostics12020507

    Article  Google Scholar 

  10. Wang, L.: Support Vector Machines: Theory and Applications. Springer Science & Business Media, Auckland, vol. 177 (2005)

    Google Scholar 

  11. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  12. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemometri. Intell. Lab. Syst. 39(1), 43–62 (1997). https://doi.org/10.1016/S0169-7439(97)00061-0

    Article  Google Scholar 

  13. Pascanu, R., et al.: On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on Machine Learning, in Proceedings of Machine Learning Research, vol. 28, no. 3, pp. 1310–1318 (2013). https://doi.org/10.48550/arXiv.1211.5063. https://proceedings.mlr.press/v28/pascanu13.html

  14. Bergstra, J., et al.: Algorithms for hyperparameter optimization. In: Advances in Neural Information Processing Systems, vol. 24 (2011). https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

  15. Xu, Y., et al.: Hyperspectral image classification via a random patches network. ISPRS J. Photogrammetry Remote Sens. 142, 344–357 (2018). https://doi.org/10.1016/j.isprsjprs.2018.05.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Chavarrías .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cebrián, P.L. et al. (2023). Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification. In: Chavarrías, M., Rodríguez, A. (eds) Design and Architecture for Signal and Image Processing. DASIP 2023. Lecture Notes in Computer Science, vol 13879. Springer, Cham. https://doi.org/10.1007/978-3-031-29970-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29970-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29969-8

  • Online ISBN: 978-3-031-29970-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics