Skip to main content

MHD Radiative Casson Fluid Flow over a Non-linear Extending Surface with Cross-Diffusion Impact in the Presence of Buoyancy and Porous Impacts

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 666))

  • 209 Accesses

Abstract

This research uses MHD Casson fluid flow with radiation, buoyancy, and joule heating impression over a non-linear extending surface. It also included the impressions of thermal diffusion—the Casson fluid’s flow characteristics in a transverse magnetic field. Partial differential equations change into an ordinary differential coupled system through appropriate similarity modification. Diagrams and tables are used to analyze the impacts of numerous non-dimensional parameters on velocity, temperature, and concentration with the help of the BVP4C technique and MATLAB software. The temperature and concentration profiles decline with increasing Dufour and Soret impressions, respectively. Velocity profile increases with increasing local thermal Grashof number while the reverse impression shows growing local concentration Grashof number. The skin friction rises with the local thermal Grashof parameter but falloff with the local concentration Grashof number. The Nusselt number increases with the Soret, Dufour, and radiation impacts. The skin friction coefficient, Nusselt number, and Sherwood number are also shown in the table with validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

B0:

Magnetic induction

Sr:

Soret number

Sc:

Schmidt parameter

C:

Concentration

\({C}_{\infty }\) :

Ambient concentration as y tends to infinity

Cfx:

Skin-friction coefficient

Cp:

Specific heat capacity

DB:

Brownian diffusion coefficient

DT:

Thermophoretic diffusion coefficient

Dm:

Mass diffusivity

F:

Dimensionless stream function

K:

parameter of the Porous media

k:

Permeability of the porous medium

M:

Magnetic field parameter

n:

viscosity factor (Constant)

Pr:

Prandtl number

Q0:

The dimensional heat Source/sink coefficient

q:

Radiative heat flux

Nr:

Radiation parameter

Nb:

Brownian motion parameter

NT:

Thermophoresis parameter

Nux:

Local Nusselt number

Ec:

Eckert number

GT:

Grashof number for local temperature

GC:

Grashof number for local concentration

Du:

Dufour number

R:

Chemical reaction parameter

R0:

Chemical reaction coefficient

Re:

Local Reynolds number

Shx:

Local Sherwood number

T:

Temperature of the nanofluid within the boundary layer

Tw:

Reference temperature

\({T}_{\infty }\) :

Temperature of the ambient fluid

u; v:

Velocity components along x- and y-directions, respectively

uw:

Reference velocity

x; y:

Cartesian coordinates along the plate and normal to it, respectively

\(\uptheta \) :

Dimensionless temperature

\(\phi \) :

Dimensionless concentration

\(\nu \) :

Kinematic coefficient of viscosity

α:

Thermal Diffusivity

β:

Casson Fluid parameter

\(\sigma \) :

The electrical conductivity

\(\lambda \) :

The heat source or sink parameter

\(\eta \) :

variable of Similarity

\(\tau \) :

Heat capacity ratio

\({\mu }_{B}\) :

Non-Newtonian plastic dynamic viscosity

\({\tau }_{w}\) :

wall shear stress of the fluid

\(\pi \) :

deformation rate Multiple factors

\({\pi }_{c}\) :

Critical value of \(\pi \) founded on non-Newtonian model

eij:

(i, j)th deformation rate factor

w:

Surface conditions

∞:

Conditions far away from the surfaces

':

Differentiation with respect to \(\eta \)

References

  1. Abo-Dahab, S.M., Abdelhafez, M.A., Mebarek-Oudina, F., Bilal, S.M.: MHD Casson nanofluid flow over nonlinearly heated porous medium in presence of extending surface effect with suction/injection. Indian J. Phys. 95(12), 2703–2717 (2021). https://doi.org/10.1007/s12648-020-01923-z

    Article  Google Scholar 

  2. Ahmed, S.E., Arafa, A.A.: Impacts of the fractional derivatives on unsteady magnetohydrodynamics radiative Casson nanofluid flow combined with Joule heating. Phys. Scr. 95(9), 095206 (2020)

    Article  Google Scholar 

  3. Akinshilo, A.T., Mabood, F., Ilegbusi, A.O.: Heat generation and nonlinear radiation effects on MHD Casson nanofluids over a thin needle embedded in porous medium. Int. Commun. Heat Mass Transfer 127, 105547 (2021)

    Article  Google Scholar 

  4. Awais, M., Raja, M.A.Z., Awan, S.E., Shoaib, M., Ali, H.M.: Heat and mass transfer phenomenon for the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force and heat source/sink. Alex. Eng. J. 60(1), 1355–1363 (2021)

    Article  Google Scholar 

  5. Bachok, N., Ishak, A., Pop, I.: Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Therm. Sci. 49(9), 1663–1668 (2010)

    Article  Google Scholar 

  6. El-Shorbagy, M.A., Eslami, F., Ibrahim, M., Barnoon, P., Xia, W.F., Toghraie, D.: Numerical investigation of mixed convection of nanofluid flow in a trapezoidal channel with different aspect ratios in the presence of porous medium. Case Stud. Therm. Eng. 25, 100977 (2021)

    Article  Google Scholar 

  7. Gupta, S., Kumar, D., Singh, J.: Analytical study for MHD flow of Williamson nanofluid with the effects of variable thickness, nonlinear thermal radiation and improved Fourier’s and Fick’s Laws. SN Appl. Sci. 2(3), 1–12 (2020). https://doi.org/10.1007/s42452-020-1995-x

    Article  Google Scholar 

  8. Haritha, A., Sarojamma, G.: Radiation effect on heat and mass transfer in MHD flow of a Casson fluid over a stretching surface. Int. J. Sci. Innov. Math. Res. 2(6), 546–553 (2014)

    Google Scholar 

  9. Kataria, H.R., Patel, H.R.: Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium. Alex. Eng. J. 55(3), 2125–2137 (2016)

    Article  Google Scholar 

  10. Kataria, H.R., Patel, H.R.: Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alex. Eng. J. 55(1), 583–595 (2016)

    Article  Google Scholar 

  11. Khan, M.R., Elkotb, M.A., Matoog, R.T., Alshehri, N.A., Abdelmohimen, M.A.: Thermal features and heat transfer enhancement of a Casson fluid across a porous stretching/shrinking sheet: analysis of dual solutions. Case Stud. Therm. Eng. 28, 101594 (2021)

    Article  Google Scholar 

  12. Mabood, F., Khan, W.A., Ismail, A.M.: Multiple slips effects on MHD Casson fluid flow in porous media with radiation and chemical reaction. Can. J. Phys. 94(1), 26–34 (2015)

    Article  Google Scholar 

  13. Mondal, M.K., Biswas, N., Manna, N.K., Chamkha, A.J.: Enhanced magnetohydrodynamic thermal convection in a partially driven cavity packed with a nanofluid‐saturated porous medium. Math. Methods Appl. Sci. (2021)

    Google Scholar 

  14. Muthtamilselvan, M.: Stagnation point flow of dusty Casson fluid with thermal radiation and buoyancy effects. J. Appl. Anal. Comput. 9(2), 615–627 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Rao, S.R., Vidyasagar, G., Deekshitulu, G.V.S.R.: Unsteady MHD free convection Casson fluid flow past an exponentially accelerated infinite vertical porous plate through porous medium in the presence of radiation absorption with heat generation/absorption. Mater. Today: Proc. 42, 1608–1616 (2021)

    Google Scholar 

  16. Rasheed, H.U., Islam, S., Zeeshan, Abbas, T., Khan, J.: Analytical treatment of MHD flow and chemically reactive Casson fluid with Joule heating and variable viscosity effect. Waves Random Complex Media 1–17 (2022)

    Google Scholar 

  17. Reddy, C.R., Rao, C.V., Surender, O.: Soret, joule heating and hall effects on free convection in a Casson fluid saturated porous medium in a vertical channel in the presence of viscous dissipation. Procedia Eng. 127, 1219–1226 (2015)

    Article  Google Scholar 

  18. Reddy, P.B.A.: Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction. Ain Shams Eng. J. 7(2), 593–602 (2016)

    Article  Google Scholar 

  19. Reddy, N.A., Janardhan, K.: Soret and Dufour effects on MHD Casson fluid over a vertical plate in presence of chemical reaction and radiation. Int. J. Curr. Res. Rev. 9, 55–61 (2017)

    Google Scholar 

  20. Reddy, S.J., Valsamy, P., Reddy, D.S.: Radiation and heat source/sink effects on MHD Casson fluid flow over a stretching sheet with slip conditions. J. Math. Comput. Sci. 11(5), 6541–6556 (2021)

    Google Scholar 

  21. Shehzad, S.A., Hayat, T., Qasim, M., Asghar, S.: Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz. J. Chem. Eng. 30, 187–195 (2013)

    Article  Google Scholar 

  22. Sheikh, N.A., Ching, D.L.C., Khan, I., Kumar, D., Nisar, K.S.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alex. Eng. J. 59(5), 2865–2876 (2020)

    Article  Google Scholar 

  23. Singh, J., Kumar, D., Baleanu, D.: A hybrid analytical algorithm for thin film flow problem occurring in non-Newtonian fluid mechanics. Ain Shams Eng. J. 12(2), 2297–2302 (2021)

    Article  Google Scholar 

  24. Singh, J., Rashidi, M.M., Kumar, D.: A hybrid computational approach for Jeffery-Hamel flow in non-parallel walls. Neural Comput. Appl. 31(7), 2407–2413 (2019)

    Article  Google Scholar 

  25. Sumalatha, C., Bandari, S.: Effects of radiations and heat source/sink on a Casson fluid flow over nonlinear stretching sheet. World J. Mech. 5(12), 257 (2015)

    Article  Google Scholar 

  26. Tassaddiq, A., Khan, I., Nisar, K.S., Singh, J.: MHD flow of a generalized Casson fluid with Newtonian heating: a fractional model with Mittag-Leffler memory. Alex. Eng. J. 59(5), 3049–3059 (2020)

    Article  Google Scholar 

  27. Samrat, S.P., Reddy, M.G., Sandeep, N.: Buoyancy effect on magnetohydrodynamic radiative flow of Casson fluid with Brownian moment and thermophoresis. Eur. Phys. J. Spec. Top. 230(5), 1273–1281 (2021). https://doi.org/10.1140/epjs/s11734-021-00043-x

    Article  Google Scholar 

  28. Venkata Ramudu, A.C., Anantha Kumar, K., Sugunamma, V., Sandeep, N.: Influence of suction/injection on MHD Casson fluid flow over a vertical stretching surface. J. Therm. Anal. Calorim. 139(6), 3675–3682 (2019). https://doi.org/10.1007/s10973-019-08776-7

    Article  Google Scholar 

  29. Vijaya, K., Reddy, G.V.R., Makinde, O.D.: Soret effect on MHD Casson fluid flow past a moving vertical plate in the presence of radiation and chemical reaction. In: Diffusion Foundations, vol. 26, pp. 86–103. Trans Tech Publications Ltd. (2020)

    Google Scholar 

  30. Waqas, M., Farooq, M., Khan, M.I., Alsaedi, A., Hayat, T., Yasmeen, T.: Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat Mass Transf. 102, 766–772 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchika Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, A., Mehta, R., Mehta, T., Jangid, S. (2023). MHD Radiative Casson Fluid Flow over a Non-linear Extending Surface with Cross-Diffusion Impact in the Presence of Buoyancy and Porous Impacts. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2022. Lecture Notes in Networks and Systems, vol 666. Springer, Cham. https://doi.org/10.1007/978-3-031-29959-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29959-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29958-2

  • Online ISBN: 978-3-031-29959-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics