Skip to main content

Concrete Corrosion Characterization Using Advanced Microscopic and Spectroscopic Techniques

  • Chapter
  • First Online:
Microbiologically Influenced Corrosion of Concrete Sewers

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 275 Accesses

Abstract

The aim of this chapter is to give an overview of basic and advanced state-of-the-art microstructural and spectroscopic analytics to investigate inorganic material corrosion in the context of biochemically aggressive sewers. The chapter covers optical methods, electron beam, X-ray and neutron techniques (SEM, MLA, XRF, XRD, CT, Neutron radiography and tomography), and spectroscopic methods (MAS-NMR, FT-IR, and Raman). For each technique, a short section on the fundamental scientific background of the method precedes and examples of data output from the latter in respect to the corrosion of cementitious materials including reinforced concrete is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiken, T.A., et al.: Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem. Concr. Res. 111, 23–40 (2018). Available at: https://doi.org/10.1016/j.cemconres.2018.06.011

  2. Alexander, M., Bertron, A., De Belie, N.: Performance of cement-based materials in aggressive aqueous environments: state-of-the-art report, RILEM TC 211-PAE (2013)

    Google Scholar 

  3. Artioli, G., et al.: X-ray diffraction microtomography (XRD-CT), a novel tool for non-invasive mapping of phase development in cement materials. Anal. Bioanal. Chem. 397(6), 2131–2136 (2010). Available at: https://doi.org/10.1007/s00216-010-3649-0

  4. Barker, R.D., et al.: Quantitative mineral mapping of drill core surfaces I: a method for µXRF mineral calculation and mapping of hydrothermally altered, fine-grained sedimentary rocks from a carlin-type gold deposit. Econ. Geol. 116(4), 803–819 (2021). Available at: https://doi.org/10.5382/econgeo.4803

  5. Beckhoff, B., et al. (eds.): Handbook of Practical X-ray Fluorescence Analysis, 1st edn. Springer, Berlin, Heidelberg (2006). Available at: https://doi.org/10.1007/978-3-540-36722-2

  6. Behnood, A., Van Tittelboom, K., De Belie, N.: Methods for measuring pH in concrete: a review. Constr. Build. Mater. 105, 176–188. Available at: https://doi.org/10.1016/J.CONBUILDMAT.2015.12.032

  7. Bensted, J.: Uses of Raman spectroscopy in cement chemistry. J. Am. Ceram. Soc. 59(3–4), 140–143 (1976). Available at: https://doi.org/10.1111/j.1151-2916.1976.tb09451.x

  8. Bernal, S.A., et al.: Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem. Based Mater. 1(3), 138–151. Available at: https://doi.org/10.1080/21650373.2012.747235

  9. Black, L., et al.: Structural features of C–S–H(I) and its carbonation in air—a Raman spectroscopic study. Part II: carbonated phases. J. Am. Ceram. Soc. 90(3), 908–917 (2007). Available at: https://doi.org/10.1111/j.1551-2916.2006.01429.x

  10. Bragg, W.: The diffraction of short electromagnetic waves by a crystal. Proc. Camb. Philos. Soc. 17, 43–57 (1913)

    CAS  Google Scholar 

  11. Bran-Anleu, P., et al.: Standard and sample preparation for the micro XRF quantification of chlorides in hardened cement pastes. Microchem. J. 141, 382–387 (2018). Available at: https://doi.org/10.1016/J.MICROC.2018.05.040

  12. Briendl, L.G., et al.: In situ pH monitoring in accelerated cement pastes. Cem. Concr. Res. 157, 106808 (2022). Available at: https://doi.org/10.1016/j.cemconres.2022.106808

  13. Buvignier, A., et al.: Resistance to biodeterioration of aluminium-rich binders in sewer network environment: study of the possible bacteriostatic effect and role of phase reactivity. Cem. Concr. Res. 123, 105785 (2019). Available at: https://doi.org/10.1016/J.CEMCONRES.2019.105785

  14. Chuang, I.-S., Maciel, G.E.: A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces. J. Phys. Chem. B 101, 3052–3064 (1997). Available at: https://doi.org/10.1021/jp9629046

  15. Chukanov, N.V.: Infrared Spectra of Mineral Species, 1st edn. Springer, Dordrecht (2014)

    Book  Google Scholar 

  16. Czamara, K., et al.: Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46, 4–20 (2015). Available at: https://doi.org/10.1002/jrs.4607

  17. Duer, M.J.: Introduction to Solid-State NMR Spectroscopy. Blackwell, Oxford (2004)

    Google Scholar 

  18. Engelhardt, G., et al.: 29Si-NMR-Untersuchungen zur Verteilung der Silicium- und Aluminiumatome im Alumosilicatgitter von Zeolithen mit Faujasit-Struktur TT—29Si NMR investigations of silicon-aluminum ordering in the aluminosilicate framework of Faujasite-type zeolites. Z. Anorg. Allg. Chem. 482, 49–64 (1981). Available at: https://doi.org/10.1002/zaac.19814821106

  19. Fandrich, R., et al.: Modern SEM-based mineral liberation analysis. Int. J. Min. Proc. 84(1–4), 310–320 (2007). Available at: https://doi.org/10.1016/J.MINPRO.2006.07.018

  20. Flemming, R.L.: Micro X-ray diffraction (μXRD): a versatile technique for characterization of earth and planetary materials. Can. J. Earth Sci. 44(9), 1333–1346 (2007). Available at: https://doi.org/10.1139/E07-020

  21. Galan, I., et al.: Continuous optical in-situ pH monitoring during early hydration of cementitious materials. Cem. Concr. Res. 150, 106584 (2021). Available at: https://doi.org/10.1016/J.CEMCONRES.2021.106584

  22. Galan, I., et al.: Amorphous and crystalline CaCO3 phase transformation at high solid/liquid ratio—insight to a novel binder system. J. Cryst. Growth 580, 126465 (2022). Available at: https://doi.org/10.1016/J.JCRYSGRO.2021.126465

  23. Garbe, U., et al.: A new neutron radiography/tomography/imaging station DINGO at OPAL. Phys. Proc. 69, 27–32 (2015). Available at: https://doi.org/10.1016/j.phpro.2015.07.003

  24. Garbe, U., et al.: Industrial application experiments on the neutron imaging instrument DINGO. Phys. Proc. 88, 13–18 (2017). Available at: https://doi.org/10.1016/j.phpro.2017.06.001

  25. Garbev, K., et al.: Structural features of C–S–H(I) and its carbonation in air—a Raman spectroscopic study. Part I: fresh phases. J. Am. Ceram. Soc. 90(3), 900–907 (2007). Available at: https://doi.org/10.1111/j.1551-2916.2006.01428.x

  26. Gibeaux, S., et al.: Weathering assessment under X-ray tomography of building stones exposed to acid atmospheres at current pollution rate. Constr. Build. Mater. 168, 187–198 (2018). Available at: https://doi.org/10.1016/J.CONBUILDMAT.2018.02.120

  27. Goldstein, J.I., et al. (eds.): Scanning Electron Microscopy and X-Ray Microanalysis, 4th edn. Springer, New York, NY (2018). Available at: https://doi.org/10.1007/978-1-4939-6676-9

  28. Grengg, C., et al.: Microbiologically induced concrete corrosion: a case study from a combined sewer network. Cem. Concr. Res. 77, 16–25 (2015). Available at: https://doi.org/10.1016/J.CEMCONRES.2015.06.011

  29. Grengg, C., et al.: The decisive role of acidophilic bacteria in concrete sewer networks: a new model for fast progressing microbial concrete corrosion. Cem. Concr. Res. 101 (2017). Available at: https://doi.org/10.1016/j.cemconres.2017.08.020

  30. Grengg, C., et al.: High-resolution optical pH imaging of concrete exposed to chemically corrosive environments. Cem. Concr. Res., 116 (2019). Available at: https://doi.org/10.1016/j.cemconres.2018.10.027

  31. Grengg, C., et al.: Long-term in situ performance of geopolymer, calcium aluminate and Portland cement-based materials exposed to microbially induced acid corrosion. Cem. Concr. Res. 131, 106034 (2020). Available at: https://doi.org/10.1016/J.CEMCONRES.2020.106034

  32. Grengg, C., et al.: Cu- and Zn-doped alkali activated mortar—properties and durability in (bio)chemically aggressive wastewater environments. Cem. Concr. Res. 149, 106541 (2021). Available at: https://doi.org/10.1016/J.CEMCONRES.2021.106541

  33. Grengg, C., et al.: Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: a micro-to-nano structural, elemental and stable isotopic multi-proxy study. Cem. Concr. Res. 142, 106373 (2021). Available at: https://doi.org/10.1016/j.cemconres.2021.106373

  34. Grousset, S., et al.: In situ monitoring of corrosion processes by coupled micro-XRF/micro-XRD mapping to understand the degradation mechanisms of reinforcing bars in hydraulic binders from historic monuments. J. Anal. Atom. Spectrom. 30(3), 721–729 (2015). Available at: https://doi.org/10.1039/c4ja00370e

  35. Groves, G.W., et al.: Progressive changes in the structure of hardened C3S cement pastes due to carbonation. J. Am. Ceram. Soc. 74(11), 2891–2896 (1991). Available at: https://doi.org/10.1111/j.1151-2916.1991.tb06859.x

  36. Gutberlet, T., Hilbig, H., Beddoe, R.E.: Acid attack on hydrated cement—effect of mineral acids on the degradation process. Cem. Concr. Res. 74, 35–43 (2015). Available at: https://doi.org/10.1016/j.cemconres.2015.03.011

  37. Harris, R.K., et al.: NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001). Pure Appl. Chem. 73, 1795–1818 (2001). Available at: https://doi.org/10.1351/pac200173111795

  38. Herisson, J., et al.: Toward an accelerated biodeterioration test to understand the behavior of Portland and calcium aluminate cementitious materials in sewer networks. Int. Biodeterior. Biodegradation (2013) [Preprint]. Available at: https://doi.org/10.1016/j.ibiod.2012.03.007

  39. Herisson, J., et al.: Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: a long-term durability study. Mater. Struct. 50(1), 8 (2016). Available at: https://doi.org/10.1617/s11527-016-0919-0

  40. Hollas, J.M.: Modern Spectroscopy, 3rd edn. Wiley, Chichester (1996)

    Google Scholar 

  41. Jiang, G. et al.: The role of iron in sulfide induced corrosion of sewer concrete. Water Res. 49, 166–174 (2014). Available at: https://doi.org/10.1016/J.WATRES.2013.11.007

  42. Jiang, G., Keller, J., Bond, P.L.: Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion (2014). Available at: https://doi.org/10.1016/j.watres.2014.07.026

  43. Joseph, A.P., et al.: Surface neutralization and H2S oxidation at early stages of sewer corrosion: influence of temperature, relative humidity and H2S concentration. Water Res. (2012) [Preprint]. Available at: https://doi.org/10.1016/j.watres.2012.05.011

  44. Ke, X., et al.: Alkali aluminosilicate geopolymers as binders to encapsulate strontium-selective titanate ion-exchangers. Dalton Trans. 48, 12116–12126 (2019). Available at: https://doi.org/10.1039/C9DT02108F

  45. Keeler, J.: Understanding NMR Spectroscopy, 2nd edn. Wiley, Chichester (2010)

    Google Scholar 

  46. Khan, H.A., et al.: Deterioration of alkali-activated mortars exposed to natural aggressive sewer environment. Constr. Build. Mater. 186, 577–597 (2018). Available at: https://doi.org/10.1016/J.CONBUILDMAT.2018.07.137

  47. Khan, H.A., et al.: Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cem. Concr. Res. 124, 105852 (2019). Available at: https://doi.org/10.1016/j.cemconres.2019.105852

  48. Khan, H.A., Castel, A., Khan, M.S.H.: Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corros. Sci. 168, 108586 (2020). Available at: https://doi.org/10.1016/J.CORSCI.2020.108586

  49. Khan, H.A., Yasir, M., Castel, A. (2022). Performance of cementitious and alkali-activated mortars exposed to laboratory simulated microbially induced corrosion test. Cem. Concr. Compos. 128, 104445. Available at: https://doi.org/10.1016/J.CEMCONCOMP.2022.104445

  50. Khanzadeh Moradllo, M., Hu, Q., Ley, M.T.: Using X-ray imaging to investigate in-situ ion diffusion in cementitious materials. Constr. Build. Mater. 136, 88–98 (2017). Available at: https://doi.org/10.1016/J.CONBUILDMAT.2017.01.038

  51. Kirkpatrick, R.J., et al.: Solid-state nuclear magnetic resonance spectroscopy of minerals. Annu. Rev. Earth Planet. Sci. 13, 29–47 (1985)

    Article  CAS  Google Scholar 

  52. Kirkpatrick, R.J., et al.: Raman spectroscopy of C–S–H, tobermorite, and jennite. Adv. Cem. Based Mater. 5(3–4), 93–99 (1997). Available at: https://doi.org/10.1016/S1065-7355(97)00001-1

  53. Lafuente, B., et al.: The power of databases: the RRUFF project. In: Armbruster, T., Danisi, R.M. (eds.) Highlights in Mineralogical Crystallography, pp. 1–29. De Gruyter, Berlin (2015)

    Google Scholar 

  54. Lanari, P., et al.: Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geol. Soc. Lond. Spec. Publ. 478(1), 39–63 (2019). Available at: https://doi.org/10.1144/SP478.4

  55. Lavigne, M.P., et al.: Innovative approach to simulating the biodeterioration of industrial cementitious products in sewer environment. Part II: validation on CAC and BFSC linings. Cem. Concr. Res. 79, 409–418 (2016). Available at: https://doi.org/10.1016/J.CEMCONRES.2015.10.002

  56. Lee, S.K., Stebbins, J.F.: The degree of aluminium avoidance in aluminosilicate glasses. Am. Miner. 84, 937–945 (1999)

    Article  CAS  Google Scholar 

  57. Li, X., et al.: The rapid chemically induced corrosion of concrete sewers at high H2S concentration. Water Res. 162, 95–104 (2019). Available at: https://doi.org/10.1016/J.WATRES.2019.06.062

  58. Lippmaa, E., et al.: Structural studies of silicates by solid-state high-resolution 29Si NMR. J. Am. Chem. Soc. 102(15), 4889–4893 (1980). Available at: https://doi.org/10.1021/ja00535a008

  59. Loewenstein, W.: The distribution of aluminium in the tetrahedra of silicates and aluminates. Am. Miner. 39(1–2), 92–96 (1954)

    CAS  Google Scholar 

  60. MacKenzie, K.J.D., Smith, M.E.: Multinuclear Solid-State NMR of Inorganic Materials, Pergamon Materials Series. Pergamon, Oxford (2002)

    Google Scholar 

  61. Magniont, C., et al.: A new test method to assess the bacterial deterioration of cementitious materials. Cem. Concr. Res. (2011) [Preprint]. Available at: https://doi.org/10.1016/j.cemconres.2011.01.014

  62. Mittermayr, F., et al.: Evaporation—a key mechanism for the thaumasite form of sulfate attack. Cem. Concr. Res. 49, 55–64. Available at: https://doi.org/10.1016/J.CEMCONRES.2013.03.003

  63. Monteny, J., et al.: Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem. Concr. Res. 30(4), 623–634 (2000). Available at: https://doi.org/10.1016/S0008-8846(00)00219-2

  64. Müller, B., et al.: Wide-range optical pH imaging of cementitious materials exposed to chemically corrosive environments. RILEM Tech. Lett. 3(0 SE-), 39–45 (2018). Available at: https://doi.org/10.21809/rilemtechlett.2018.72

  65. Müller, D., et al.: Solid-state aluminium-27 nuclear magnetic resonance chemical shift and quadrupole coupling data for condensed AlO4 tetrahedra. J. Chem. Soc. Dalton Trans., 1277–1281 (1986). Available at: https://doi.org/10.1039/DT9860001277

  66. Ortaboy, S., et al.: Effects of CO2 and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy. RSC Adv. 7, 48925–48933 (2017). Available at: https://doi.org/10.1039/c7ra07266j

  67. Peyre Lavigne, M., et al.: Innovative approach to simulating the biodeterioration of industrial cementitious products in sewer environment. Part II: validation on CAC and BFSC linings. Cem. Concr. Res. (2015) [Preprint]. Available at: https://doi.org/10.1016/j.cemconres.2015.10.002

  68. Plusquellec, G., et al.: Determination of the pH and the free alkali metal content in the pore solution of concrete: review and experimental comparison. Cem. Concr. Res. 96, 13–26 (2017). Available at: https://doi.org/10.1016/J.CEMCONRES.2017.03.002

  69. Potgieter-Vermaak, S.S., Potgieter, J.H., Van Grieken, R.: The application of Raman spectrometry to investigate and characterize cement, part I: a review. Cem. Concr. Res. 36, 656–662 (2006). Available at: https://doi.org/10.1016/j.cemconres.2005.09.008

  70. Proverbio, E., Carassiti, F.: Evaluation of chloride content in concrete by X-ray fluorescence. Cem. Concr. Res. 27(8), 1213–1223 (1997). Available at: https://doi.org/10.1016/S0008-8846(97)00108-7

  71. Reed, S.J.B.: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press (2005). Available at: https://doi.org/10.1017/CBO9780511610561

  72. Reiche, I., Chalmin, E.: Synchrotron methods: color in paints and minerals. In: Holland, H.D., Turekian, K.K. (eds.) Treatise on Geochemistry, 2nd edn., pp. 209–239. Elsevier, Oxford (2014). Available at: https://doi.org/10.1016/B978-0-08-095975-7.01216-X

  73. Renaudin, G., et al.: A Raman study of the sulfated cement hydrates: ettringite and monosulfoaluminate. J. Adv. Concr. Technol. 5(3), 299–312 (2007). Available at: https://doi.org/10.3151/jact.5.299

  74. Renaudin, G. et al.: Structural characterization of C–S–H and C–A–S–H samples—part II: local environment investigated by spectroscopic analyses. J. Solid State Chem. 182, 3320–3329 (2009). Available at: https://doi.org/10.1016/j.jssc.2009.09.024

  75. RRUFF Project: RRUFF project, database of Raman spectroscopy, X-ray diffraction and chemistry of minerals (RRUFF database) (2022). Available at: https://rruff.info/. Accessed: 6 May 2022

  76. Rygula, A., et al.: Raman spectroscopy of proteins: a review. J. Raman Spectrosc. 44, 1061–1076 (2013). Available at: https://doi.org/10.1002/jrs.4335

  77. Scrivener, K., Snellings, R., Lothenbach, B. (eds.): A Practical Guide to Microstructural Analysis of Cementitious Materials. 1st edn (2016). Available at: https://doi.org/10.1201/b19074

  78. Serdar, M., et al.: Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete. Cem. Concr. Res. 71, 93–105 (2015). Available at: https://doi.org/10.1016/j.cemconres.2015.02.004

  79. Sevelsted, T.F., Skibsted, J.: Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 71, 56–65 (2015). Available at: https://doi.org/10.1016/j.cemconres.2015.01.019

  80. Simon, S., Bertmer, M., Gluth, G.J.G.: Sol–gel synthesis and characterization of lithium aluminate (L–A–H) and lithium aluminosilicate (L–A–S–H) gels. Int. J. Appl. Ceram. Technol. 19(6), 3179–3190 (2022). Available at: https://doi.org/10.1111/ijac.14187

  81. Skibsted, J.: High-resolution solid-state nuclear magnetic resonance spectroscopy of Portland cement-based systems. In: Scrivener, K., Snellings, R., Lothenbach, B. (eds.) A Practical Guide to Microstructural Analysis of Cementitious Materials, pp. 213–286. CRC Press, Boca Raton (2016)

    Google Scholar 

  82. Smith, E., Dent, G.: Modern Raman Spectroscopy: A Practical Approach, 2nd edn. Wiley, Hoboken (2019)

    Book  Google Scholar 

  83. Song, Y., Wightman, E., et al.: Corrosion of reinforcing steel in concrete sewers. Sci. Total Environ. 649, 739–748 (2019). Available at: https://doi.org/10.1016/J.SCITOTENV.2018.08.362

  84. Song, Y., Tian, Y., et al.: Distinct microbially induced concrete corrosion at the tidal region of reinforced concrete sewers. Water Res. 150, 392–402 (2019). Available at: https://doi.org/10.1016/J.WATRES.2018.11.083

  85. Song, Y., et al.: Rebar corrosion and its interaction with concrete degradation in reinforced concrete sewers. Water Res. 182, 115961 (2020). Available at: https://doi.org/10.1016/J.WATRES.2020.115961

  86. Song, Y., et al.: A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. Sci. Total Environ. 791, 148270 (2021). Available at: https://doi.org/10.1016/j.scitotenv.2021.148270

  87. Stuart, B.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  88. Sturm, P. et al.: Sulfuric acid resistance of one-part alkali-activated mortars. Cem. Concr. Res. 109, 54–63 (2018). Available at: https://doi.org/10.1016/j.cemconres.2018.04.009

  89. Suzuki, T., Shiotani, T., Ohtsu, M.: Evaluation of cracking damage in freeze-thawed concrete using acoustic emission and X-ray CT image. Constr. Build. Mater. 136, 619–626 (2017). Available at: https://doi.org/10.1016/J.CONBUILDMAT.2016.09.013

  90. Taheri, S., et al.: Migration and formation of an iron rich layer during acidic corrosion of concrete with no steel reinforcement. Constr. Build. Mater. 309, 125105 (2021). Available at: https://doi.org/10.1016/J.CONBUILDMAT.2021.125105

  91. Tarte, P.: Applications nouvelles de la spectrométrie infrarouge à des problèmes de cristallochimie. Silic. Indus. 28, 345–354 (1963)

    CAS  Google Scholar 

  92. Tarte, P.: Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim. Acta Part A 23(7), 2127–2143 (1967)

    Article  CAS  Google Scholar 

  93. Torréns-Martín, S., et al.: Raman spectroscopy of anhydrous and hydrated calcium aluminates and sulfoaluminates. J. Am. Ceram. Soc. 96, 3589–3595 (2013). Available at: https://doi.org/10.1111/jace.12535

  94. Vogt, O., Ukrainczyk, N., Koenders, E.: Effect of silica fume on metakaolin geopolymers’ sulfuric acid resistance. Materials (2021). Available at: https://doi.org/10.3390/ma14185396

  95. Vollpracht, A., et al.: The pore solution of blended cements: a review. Mater. Struct. 49(8), 3341–3367 (2016). Available at: https://doi.org/10.1617/s11527-015-0724-1

  96. Walkley, B., et al.: New structural model of hydrous sodium aluminosilicate gels and the role of charge-balancing extra-framework Al. J. Phys. Chem. C 122, 5673–5685 (2018). Available at: https://doi.org/10.1021/acs.jpcc.8b00259

  97. Walkley, B., Provis, J.L.: Solid-state nuclear magnetic resonance spectroscopy of cements. Mater. Today Adv. 1 (2019). Available at: https://doi.org/10.1016/j.mtadv.2019.100007

  98. Yang, S., Cui, H., Poon, C.S.: Assessment of in-situ alkali-silica reaction (ASR) development of glass aggregate concrete prepared with dry-mix and conventional wet-mix methods by X-ray computed micro-tomography. Cem. Concr. Compos. 90, 266–276 (2018). Available at: https://doi.org/10.1016/J.CEMCONCOMP.2018.03.027

  99. Yuan, J. et al.: Investigating the failure process of concrete under the coupled actions between sulfate attack and drying–wetting cycles by using X-ray CT. Constr. Build. Mater. 108, 129–138 (2016). Available at: https://doi.org/10.1016/J.CONBUILDMAT.2016.01.040

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Mittermayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittermayr, F., Gluth, G.J.G., Grengg, C., Garbe, U., Jiang, G. (2023). Concrete Corrosion Characterization Using Advanced Microscopic and Spectroscopic Techniques. In: Jiang, G. (eds) Microbiologically Influenced Corrosion of Concrete Sewers . Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-29941-4_4

Download citation

Publish with us

Policies and ethics