Skip to main content

A Standalone Millimeter-Wave SLAM System for Indoor Search and Rescue

  • Conference paper
  • First Online:
Sensing Technology (ICST 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1035))

Included in the following conference series:

  • 469 Accesses

Abstract

Real-time location data offers great insight to achieve many intelligent and context-aware applications, such as personalised location-aware services, navigation, surveillance, and search and rescue. While outdoor location can be easily collected by the global positioning system (GPS), indoor location data remains challenging to collect and faces several challenges such as cost, pre-configured infrastructures, and limited long-term accuracy. In this study, a novel Simultaneous Localization and Mapping (SLAM) system is proposed and implemented targeting indoor search and rescue application, using the state-of-the-art millimeter-wave (mmWave) radar sensor. The proposed system is completely self-contained and requires no prior installation or configuration of any other devices. A 2-dimensional map and movement trajectory data is produced as the output of the SLAM system. Typical straight line and L-shape pathway experiments have been conducted. In both cases, the proposed system is capable of achieving submeter accuracy, which are promising results demonstrating its ability to provide accurate SLAM for indoor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, G., Yim, J.: A review of the techniques for indoor location based service. Int. J. Grid Distrib. Comput. 5(1), 1–22 (2012)

    Google Scholar 

  2. Youssef, M.: Indoor Localization. Encyclopedia of GIS, pp. 547–552 (2008)

    Google Scholar 

  3. Jochen, S., Agnès, V.: Location-Based Services, 1st edn. Elsevier, USA (2004)

    Google Scholar 

  4. Wang, H., et al.: Mobile robot indoor positioning system based on K-ELM. J. Sens. 2019 (2019)

    Google Scholar 

  5. de Cillis, F., et al.: Indoor positioning system using walking pattern classification. In: Proceedings of the 22nd Mediterranean Conference on Control and Automation, pp. 511–516 (2014)

    Google Scholar 

  6. Tabbakha, N.E., Tan, W.H., Ooi, C.P.: Indoor location and motion tracking system for elderly assisted living home. In: Proceedings of the 2017 International Conference on Robotics, Automation and Sciences, pp. 1–4 (2018)

    Google Scholar 

  7. Santoso, F., Redmond, S.J.: Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art. Physiol. Meas. 36(10), R53 (2015)

    Article  Google Scholar 

  8. Al-Ammar, M.A., et al.: Comparative survey of indoor positioning technologies, techniques, and algorithms. In: Proceedings of the 2014 International Conference on Cyberworlds, pp. 245–252 (2014)

    Google Scholar 

  9. Liu, F., et al.: Survey on WiFi‐based indoor positioning techniques. IET Commun. 14(9), 1372–1383 (2020). https://doi.org/10.1049/iet-com.2019.1059

    Article  Google Scholar 

  10. Kim, J., Han, D.: Passive WiFi fingerprinting method. In: Proceedings of the 9th International Conference on Indoor Positioning and Indoor Navigation (2018)

    Google Scholar 

  11. Satan, A., Toth, Z.: Development of bluetooth based indoor positioning application. In: Proceedings of the 2018 IEEE International Conference on Future IoT Technologies, pp. 1–6 (2018)

    Google Scholar 

  12. Satan, A.: Bluetooth-based indoor navigation mobile system. In: Proceedings of the 19th International Carpathian Control Conference, pp. 332–337 (2018)

    Google Scholar 

  13. Lai, K.C., Ku, B.H., Wen, C.Y.: Using cooperative PIR sensing for human indoor localization. In: Proceedings of the 27th Wireless and Optical Communication Conference, pp. 1–5 (2018)

    Google Scholar 

  14. Yang, D., Bin, Xu., Rao, K., Sheng, W.: Passive infrared (PIR)-based indoor position tracking for smart homes using accessibility maps and a-star algorithm. Sensors 18(2), 332 (2018). https://doi.org/10.3390/s18020332

    Article  Google Scholar 

  15. von Zabiensky, F., Kreutzer, M., Bienhaus, D.: Ultrasonic waves to support human echolocation. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2018. LNCS, vol. 10907, pp. 433–449. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92049-8_31

    Chapter  Google Scholar 

  16. Hoeflinger, F., Saphala, A., Schott, D.J., Reindl, L.M., Schindelhauer, C.: Passive Indoor-Localization using Echoes of Ultrasound Signals. In: Proceedings of the 2019 International Conference on Advanced Information Technologies, pp. 60–65 (2019)

    Google Scholar 

  17. Khairuddin, A.R., Talib, M.S., Haron, H.: Review on simultaneous localization and mapping (SLAM). In: Proceedings of the 5th IEEE International Conference on Control System, Computing and Engineering, pp. 85–90 (2015)

    Google Scholar 

  18. Azril, N., Zaman, B., Abdul-Rahman, S., Mutalib, S., Shamsuddin, R.: Applying Graph-based SLAM Algorithm in a Simulated Environment. In: Proceedings of the 6th International Conference on Software Engineering & Computer Systems. IOP Science, Malaysia (2019)

    Google Scholar 

  19. Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(3), 376–382 (1991)

    Article  Google Scholar 

  20. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: fast incremental smoothing and mapping with efficient data association. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1670–1677 (2007)

    Google Scholar 

  21. Yassin, A., Nasser, Y., Awad, M., Al-Dubai, A.: Simultaneous context inference and mapping using mm-Wave for indoor scenarios. In: Proceedings of the 2017 IEEE International Conference on Communications, pp.1–6 (2017)

    Google Scholar 

  22. Wei, Z., Zhao, Y., Liu, X., Feng, Z.: DoA-LF: a location fingerprint positioning algorithm with millimeter-wave. IEEE Access 5, 22678–22688 (2017)

    Article  Google Scholar 

  23. Gualda, D., et al.: Coverage analysis of an ultrasonic local positioning system according to the angle of inclination of the beacons structure. In: Proceedings of the 10th International Conference on Indoor Positioning and Indoor Navigation (2019)

    Google Scholar 

  24. IWR1443 Single-Chip 76-to 81-GHz mmWave Sensor 1 Device Overview. https://www.ti.com/lit/ds/symlink/iwr1443.pdf. last accessed: 2022/01/23

  25. He, C., Tang, C., Yu, C.: A federated derivative cubature Kalman filter for IMU-UWB indoor positioning. Sensors 20(12), 3514 (2020)

    Article  Google Scholar 

  26. Poulose, A., Han, D.S.: Hybrid indoor localization using IMU sensors and smartphone camera. Sensors 19(23), 5084 (2019). https://doi.org/10.3390/s19235084

    Article  Google Scholar 

  27. al Mamun, M.A., Rasit Yuce, M.: Map-aided fusion of IMU PDR and RSSI fingerprinting for improved indoor positioning. In: Proceedings of the 2021 IEEE Sensors, pp. 1–4. IEEE, Sydney (2021)

    Google Scholar 

  28. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  29. Kjer, H.M., Wilm, J.: Evaluation of surface registration algorithms for PET motion correction. https://lucidar.me/fr/mathematics/files/icp_bscthesis.pdf. last accessed: 2022/03/27

  30. Godin, G., Rioux, M., Baribeau, R.: Three-dimensional registration using range and intensity information. In: Proceedings of the Photonics for Industrial Applications, pp. 279–290. SPIE (1994)

    Google Scholar 

  31. Kaess, M., et al.: ISAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31(2), 216–235 (2012). https://doi.org/10.1177/0278364911430419

    Article  Google Scholar 

  32. Aldroubi, A., Hamm, K., Koku, A.B., Sekmen, A.: CUR decompositions, similarity matrices, and subspace clustering. Front. Appl. Math. Stat. 4, 65 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huyue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, K.IK. (2023). A Standalone Millimeter-Wave SLAM System for Indoor Search and Rescue. In: Suryadevara, N.K., George, B., Jayasundera, K.P., Mukhopadhyay, S.C. (eds) Sensing Technology. ICST 2022. Lecture Notes in Electrical Engineering, vol 1035. Springer, Cham. https://doi.org/10.1007/978-3-031-29871-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29871-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29870-7

  • Online ISBN: 978-3-031-29871-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics