Skip to main content

Random Forest for Semantic Segmentation Using Pre Trained CNN (VGG16) Features

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 669))

Included in the following conference series:

Abstract

For years the semantic segmentation of images has become a high-level task, and a great challenge in the field of computer vision. From a technical point of view, semantic segmentation consists in segmenting an image by grouping the parts that belong to the same class of object (for example: beach, road, trees…). Today, several research works are proposed to treat this research axis, and still the challenge remains to have a powerful model to improve or augment these existing techniques. In this paper, we have proposed a hybrid method for semantic image segmentation, combining two popular and powerful techniques. These are the convolutional neural network CNN with the VGG16 model and the Random Forest algorithm, which are two outstanding classifiers. In fact, first of all we apply for the input image the pre-trained model based on the CNN architecture which is VGG16 to automatically extract the features. Then, these extracted features are used for another classification process with Random Forest to make the prediction of the labels of the input models. The proposed approach combines the strengths of two techniques which explains the improvement and accuracy of the obtained results. To make a comparison between the different methods, we adopted a set of evaluation measures: IOU, SSIM, SAM, and MS-SSIM. From the results, we can say that our approach shows its effectiveness in solving the problem of image segmentation in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khrissi, L., El Akkad, N., Satori, H., Satori, K.: Clustering method and sine cosine algorithm for image segmentation. Evol. Intel. 15(1), 669–682 (2021). https://doi.org/10.1007/s12065-020-00544-z

    Article  Google Scholar 

  2. Khrissi, L., Satori, H., Satori, K., El Akkad, N.: An Efficient image clustering technique based on fuzzy c-means and cuckoo search algorithm. Int. J. Adv. Comput. Sci. Appl. 12(6), 423432 (2021). https://doi.org/10.14569/IJACSA.2021.0120647

  3. Moussaoui, H., Benslimane, M., El Akkad, N.: A novel brain tumor detection approach based on fuzzy C-means and marker watershed algorithm. In: Motahhir, S., Bossoufi, B. (eds.) ICDTA 2021. LNNS, vol. 211, pp. 871–879. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73882-2_79

    Chapter  Google Scholar 

  4. Khrissi, L., El Akkad, N., Satori, H., Satori, K.: A performant clustering approach based on an improved sine cosine algorithm. Int. J. Comput. 21(2), 159–168 (2022). https://doi.org/10.47839/ijc.21.2.2584

  5. Khrissi, L., Akkad, N.E., Satori, H., Satori, K.: Color image segmentation based on hybridization between Canny and k-means. In: 2019 7th Mediterranean Congress of Telecommunications (CMT), pp. 1–4 (2019). https://doi.org/10.1109/CMT.2019.8931358

  6. Faska, Z., Khrissi, L., Haddouch, K., EL Akkad, N.: A Powerful and efficient method of image segmentation based on random forest algorithm. In: Motahhir, S., Bossoufi, B. (eds.) ICDTA 2021. LNNS, vol. 211, pp. 893–903. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73882-2_81

    Chapter  Google Scholar 

  7. Moussaoui, H., Benslimane, M., El Akkad, N.: A novel brain tumor detection approach based on fuzzy C-means and Marker Watershed algorithm. In: Digital Technologies and Applications, June 2021. https://doi.org/10.1007/978-3-030-73882-2_79

  8. Khrissi, L., El Akkad, N., Satori, H., Satori, K.: Image segmentation based on k-means and genetic algorithms. In: Bhateja, V., Satapathy, S.C., Satori, H. (eds.) Embedded Systems and Artificial Intelligence. AISC, vol. 1076, pp. 489–497. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0947-6_46

    Chapter  Google Scholar 

  9. Khrissi, L., El Akkad, N., Satori, H., Satori, K.: Simple and efficient clustering approach based on cuckoo search algorithm. In: 2020 Fourth International Conference on Intelligent Computing in Data Sciences, pp. 1–6, October 2020. https://doi.org/10.1109/ICDS50568.2020.9268754

  10. Moussaoui, H., Benslimane, M., El Akkad, N.: Image segmentation approach based on hybridization between K-means and mask R-CNN. In: Bennani, S., Lakhrissi, Y., Khaissidi, G., Mansouri, A., Khamlichi, Y. (eds.) WITS 2020. LNEE, vol. 745, pp. 821–830. Springer, Singapore (2022). https://doi.org/10.1007/978-981-33-6893-4_74

    Chapter  Google Scholar 

  11. Chen, F., et al.: JSPnet: learning joint semantic & instance segmentation of point clouds via feature self-similarity and cross-task probability. Pattern Recognit. 122, 108250 (2022)

    Article  Google Scholar 

  12. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., GarciaRodriguez, J.: A review on deep learning techniques applied to semantic segmentation, arXiv, 2017 preprintarXiv:1704.06857

  13. Edelman, S., Poggio, T.: Integrating visual cues for object segmentation and recognition. Optics News 15, 8 (1989)

    Article  Google Scholar 

  14. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation, arXiv:1801.00868 (2018)

  15. Cheng, B., et al.: PanopticDeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation, arXiv:1911.10194 (2019)

  16. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  17. Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gomez-Moreno, H., López-Ferreras, F.: Roadsign detection and recognition based on support vector machines. IEEE Trans. Intell. Transp. Syst. 8(2), 264–278 (2007)

    Google Scholar 

  18. Moon, N., Bullitt, E., van Leemput, K., Gerig, G.: Automatic brain and tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 372–379. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45786-0_46

    Chapter  Google Scholar 

  19. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  21. J. Han, D. Zhang, G. Cheng, N. Liu, D. Xu, Advanced deep-learning techniques for salient and category-specific object detection: a survey, IEEE Signal Process. Mag.35(2018)84 100

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  23. Yu, S., Xie, L., Liu, L., Xia, D.: Learning long-term temporal features with deep neural networks for human action recognition. IEEE Access 8, 1840–1850 (2019)

    Article  Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  25. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  26. Al-Dhamari, A., Sudirman, R., Mahmood, N.H.: Transfer deep learning along with binary suport vector machine for abnormal behavior detection. IEEE Access 8, 61085–61095 (2020)

    Google Scholar 

  27. Tian, T., Chu, Z., Hu, Q., Ma, L.: Class-wise fully convolutional network for semantic segmentation of remote sensing images. Remote Sens. 13 (2021). https://doi.org/10.3390/rs13163211, https://www.mdpi.com/2072-4292/13/16/3211

  28. LeCun, Y., Bottou, Y., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  29. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. Imagenet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255

    Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  31. Guo, L., Yan, M., Cukic, B., Singh, H.: Robust prediction of fault-proneness by random forests. In: 15th International Symposium on Software Reliability Engineering. ISSRE 2004, pp. 417–428. IEEE (2004)

    Google Scholar 

  32. Bansal, P., Vanjani, A., Mehta, A., Kavitha, J.C., Kumar, S.: Improving the classification accuracy of melanoma detection by performing feature selection using binary Harris Hawks optimization algorithm. Soft Comput. 26(17), 8163–8181 (2022)

    Article  Google Scholar 

  33. Bhatt, R., Naik, N., Subramanian, V.K.: SSIM compliant modeling framework with denoising and deblurring applications. IEEE Trans. Image Process. 30, 2611–2626 (2021)

    Article  MathSciNet  Google Scholar 

  34. Li, P., Sang-Heon, L., Hung-Yao, H., Jae-Sam, P.: Nonlinear fusion of multispectral citrus fruit image data with information contents. Sensors 17(12), 142- (2017)

    Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Faska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faska, Z., Khrissi, L., Haddouch, K., El Akkad, N. (2023). Random Forest for Semantic Segmentation Using Pre Trained CNN (VGG16) Features. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-031-29860-8_52

Download citation

Publish with us

Policies and ethics