Skip to main content

The Wonderful Weather of Greece

  • Chapter
  • First Online:
The Geography of Greece

Abstract

The Greek area can be characterized by a large spectrum of atmospheric phenomena and climatic conditions, some of which have a high impact on many aspects of human activities, safety, and well-being. This region, due to its morphological structure and to geographical location, has long been considered as a hot spot of meteorological and climatological phenomena, deserving multidisciplinary scientific investigation. The scientific exploration that has been carried out on these high-impact atmospheric phenomena that occur in the major Greek area is indeed numerous and widespread, accompanied by the available national and international literature. The temperature and precipitation regimes are initially presented, followed by their analogous effects on heat waves, hailstorms, and floods. Emphasis is given to observed characteristics, extreme events, and past and future climate characteristics and trends. The characteristics of explosive cyclogenesis (meteorological “bombs”) and the “medicanes” (Mediterranean hurricanes) in the major area of interest are also presented. The weather modification activities, particularly those on hail suppression, are delineated and discussed. The climatological characteristics and the effects of climatic change on all the aforementioned atmospheric phenomena are considered throughout this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balafoutis, C., & Makrogiannis, T. (2001). Analysis of a heat wave phenomenon over Greece and its implications for tourism and recreation. In A. Matzarakis & C. R. de Freitas (Eds.), Proceedings of the first international workshop on climate, tourism and recreation. Report of a workshop, Halkidiki, Greece (pp. 113–121). International Society of Biometeorology.

    Google Scholar 

  • Beck, H., Zimmermann, N., McVicar, T., et al. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214.

    Google Scholar 

  • Bosart, L. F. (1981). The presidents’ day snowstorm of 18–19 February 1979: A subsynoptic – scale event. Monthly Weather Review, 109, 1542–1566.

    Google Scholar 

  • Brikas, D., Karacostas, T., & Pytharoulis, I. (2012). Synoptic aspects of the eastern Mediterranean explosive cyclogenesis of 22 January 2004. In C. G. Helmis & P. T. Nastos (Eds.), Advances in meteorology, climatology and atmospheric physics (pp. 35–41). Springer Atmospheric Sciences.

    Google Scholar 

  • Burt, S. D., & Mansfield, D. A. (1988). The great storm of 15–16 October 1987. Weather, 43, 90–110.

    Article  Google Scholar 

  • Buzzi, A., Tartaglione, N., & Malguzzi, P. (1998). Numerical simulations of the 1994 Piedmont flood: Role of orography and moist processes. Monthly Weather Review, 126, 2369–2383.

    Article  Google Scholar 

  • Capaldo, M., Conte, M., Finizio, C., & Todisco, G. (1980). A detailed analysis of a severe storm in the Central Mediterranean: The case of Trapani flood. Rivista di Meteorologia Aeronautica, 15, 183–199.

    Google Scholar 

  • Changnon, S. A., Jr. (1977). The climatology of hail in North America. In Hail: A review of hail science and hail suppression (Meteorological Monographs) (Vol. 38, pp. 107–128). AMS.

    Chapter  Google Scholar 

  • Conte, M., Piervitali, E., & Colacino, M. (1997). The meteorological “bomb” in the Mediterranean. In INM/WMO international symposium on cyclones and hazardous weather in the Mediterranean (pp. 283–287). Centro de Publ. del Ministerio de Medio Ambiente.

    Google Scholar 

  • Conte, M., Sorani, R., & Piervitali, E. (2002). Extreme climatic events over the Mediterranean. In N. A. Geeson, C. J. Bandt, & J. B. Thornes (Eds.), Mediterranean desertification: A mosaic of processes and responses (pp. 15–31). Wiley.

    Google Scholar 

  • Demirtas, M. (2016). The October 2011 devastating flash flood event of Antalya: Triggering mechanisms and quantitative precipitation forecasting. Quarterly Journal of the Royal Meteorological Society, 142, 2336–2346.

    Article  Google Scholar 

  • Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34, L11706.

    Article  Google Scholar 

  • Gao, X., Pal, J. S., & Giorgi, F. (2006). Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophysical Research Letters, 33, L03706.

    Article  Google Scholar 

  • Georgoulias, A. K., Akritidis, D., Kalisoras, A., Kapsomenakis, J., Melas, D., Zerefos, C. S., & Zanis, P. (2022). Climate change projections for Greece in the 21st century from high-resolution EURO-CORDEX RCM simulations. Atmospheric Research, 271, 106049. https://doi.org/10.1016/j.atmosres.2022.106049

    Article  Google Scholar 

  • Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707.

    Google Scholar 

  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.

    Article  Google Scholar 

  • Giorgi, F., & Mearns, L. O. (1999). Introduction to special section: Regional climate modeling revisited. Journal of Geophysical Research, 104(D6), 6335–6352.

    Article  Google Scholar 

  • Goubanova, K., & Li, L. (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change, 57, 27–42.

    Article  Google Scholar 

  • Gyakum, J. R. (1983). On the evolution of the QE II storm. I: Synoptic aspects. Monthly Weather Review, 111, 1137–1155.

    Article  Google Scholar 

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.

    Google Scholar 

  • IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. P’ean, S. Berger, B. Zhou, Eds.) (pp. 287–376). Cambridge University Press.

    Google Scholar 

  • IPCC, Climate Change 2007 (2007) The physical science basis. Contribution of Working Group I to the fourth assessment, report of the Intergovernmental Panel on Climate Change (S. Solomon, D. Qin, M. Manning, Z Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller, Eds.) (996pp.). Cambridge University Press.

    Google Scholar 

  • Jacob, D., Petersen, J., Eggert, B., et al. (2014). EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, 14, 563–578.

    Article  Google Scholar 

  • Karacostas, T. S. (1984). The design of the Greek National Suppression Program. In Proceedings of the 9th conference on weather modification, Park City, Utah, USA, 26pp.

    Google Scholar 

  • Karacostas, T. S. (1989). The Greek National Hail Suppression Program: Design and conduct of the experiment. In: Preprints of the 5th WMO scientific conference on weather modification and applications of cloud physics, Beijing, China, pp. 605–608.

    Google Scholar 

  • Karacostas, T. S. (1991). Some characteristics of convective cells in the Greek National Hail Suppression Program. Geofizika, 8, 43–50.

    Google Scholar 

  • Karacostas, T. S. (2003). The Greek National Hail Suppression Program: Design, physical hypothesis and statistical evaluation. In Regional seminar on cloud physics and weather modification (WMP No. 42, WMO-TD No. 1227) (213 pp). World Meteorological Organization.

    Google Scholar 

  • Karacostas, T. S., & Flocas, A. A. (1983). The development of the “bomb” over the Mediterranean area. La Meteorologie, 34, 351–358.

    Google Scholar 

  • Karavoulias, A., & Argiriou, A. (2020). Analysis of extreme climatic indexes over Greece for the period 1979–2019. ERCIM News, Special Theme: The Climate Action, 121, 23–24.

    Google Scholar 

  • Kotroni, V., Lagouvardos, K., Kallos, G., & Ziakopoulos, D. (1999). Severe flooding over central and southern Greece associated with pre-cold frontal orographic lifting. Quarterly Journal of the Royal Meteorological Society, 125, 967–991.

    Google Scholar 

  • Kotroni, V., Lagouvardos, K., & Retalis, A. (2011). The heat wave of June 2007 in Athens, Greece – Part 2: Modeling study and sensitivity experiments. Atmospheric Research, 100(1), 1–11.

    Google Scholar 

  • Kouroutzoglou, J., Flocas, H. A., Simmonds, I., Keay, K., & Hatzaki, M. (2011). Climatological aspects of explosive cyclones in the Mediterranean. International Journal of Climatology, 31, 1785–1802.

    Article  Google Scholar 

  • Lagouvardos, K., Kotroni, V., Dobricic, S., Kallos, G., & Nickovic, S. (1996). On the storm of 21–22 October 1994 over Greece: Observations and model results. Journal of Geophysical Research, 101(D21), 26217–26226.

    Article  Google Scholar 

  • Lagouvardos, K., Kotroni, V., Nickovic, S., Jovic, D., Kallos, G., & Tremback, C. J. (1999). Observations and model simulations of a winter sub-synoptic vortex over the Central Mediterranean. Meteorological Applications, 6, 371–383.

    Article  Google Scholar 

  • Lagouvardos, K., Kotroni, V., & Defer, E. (2007). The 21–22 January 2004 explosive cyclo- genesis over the Aegean Sea: Observations and model analysis. Quarterly Journal of the Royal Meteorological Society, 133, 1519–1531.

    Article  Google Scholar 

  • Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., et al. (2013). Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Regional Environmental Change, 14, 1937–1949.

    Article  Google Scholar 

  • Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A., Rosselló, J., Vinet, F., & Boissier, L. (2013). Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Natural Hazards and Earth System Sciences, 13, 1337–1350.

    Article  Google Scholar 

  • Mariolopoulos, E. G. (1938). The climate of Greece (in Greek). A. A. Papaspyrou Press.

    Google Scholar 

  • Mavromatis, T., Georgoulias, A. K., Akritidis, D., Melas, D., & Zanis, P. (2022). Spatiotemporal evolution of seasonal crop specific climatic indices under climate change in Greece based on EURO-CORDEX RCM simulations. Sustainability, 14, 17048. https://doi.org/10.3390/su142417048

    Article  Google Scholar 

  • Michaelides, S., Karacostas, T., et al. (2018). Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmospheric Research, 208, 4–44.

    Article  CAS  Google Scholar 

  • Nastos, P. T., Politi, N., & Kapsomenakis, J. (2013). Spatial and temporal variability of the Aridity Index in Greece. Atmospheric Research, 119, 140–152. https://doi.org/10.1016/j.atmosres.2011.06.017

    Article  Google Scholar 

  • Pakalidou, N., & Karacosta, P. (2017). Study of very log-period extreme precipitation records in Thessaloniki, Greece. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2017.07.029

  • Papagiannaki, K., Lagouvardos, K., & Kotroni, V. (2013). A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011. Natural Hazards and Earth System Sciences, 13, 727–736. https://doi.org/10.5194/nhess-13-727-2013

    Article  Google Scholar 

  • Pytharoulis, I. (2008). Numerical study of the eastern Mediterranean ‘bomb’ of Jan 2004. In: Proceedings of the 8th annual meeting of EMS and ECAC. Amsterdam, Holland, 1–3 October.

    Google Scholar 

  • Pytharoulis, I., Craig, G. C., & Ballard, S. P. (2000). The hurricane-like Mediterranean cyclone of January 1995. Meteorological Applications, 7, 261–279.

    Article  Google Scholar 

  • Pytharoulis, I., Kotsopoulos, S., Tegoulias, I., Kartsios, S., Bampzelis, D., & Karacostas, T. (2016). Numerical modeling of an intense precipitation event and its associated lightning activity over northern Greece. Atmospheric Research, 169, 523–538. https://doi.org/10.1016/j.atmosres.2015.06.019

    Article  Google Scholar 

  • Pytharoulis, I., Matsangouras, I. T., Tegoulias, I., Kotsopoulos, S., Karacostas, T. S., & Nastos, P. T. (2017). Numerical study of the medicane of November 2014. In T. S. Karacostas, A. F. Bais, & P. T. Nastos (Eds.), Perspectives on atmospheric sciences (Springer atmospheric sciences) (pp. 115–121). Springer. https://doi.org/10.1007/978-3-319-35095-0_17

    Chapter  Google Scholar 

  • Sanders, F., & Gyakum, J. R. (1980). Synoptic-dynamic climatology of the “bomb”. Monthly Weather Review, 108, 1589–1606.

    Article  Google Scholar 

  • Sioutas, M. V., Meaden, T., & Webb, J. D. C. (2009). Hail frequency, distribution and intensity in northern Greece. Atmospheric Research, 93, 526–533.

    Article  Google Scholar 

  • Tolika, K. (2019). Assessing heat waves over Greece using the excess heat factor (EHF). Climate, 7, 9.

    Article  Google Scholar 

  • Tolika, K., Zanis, P., & Anagnostopoulou, C. (2012). Regional climate change scenarios for Greece: Future temperature and precipitation projections from ensembles of RCMs. Global NEST Journal, 14(4), 407–421.

    Google Scholar 

  • Zanis, P., Kapsomenakis, I., Philandras, C., et al. (2009). Analysis of an ensemble of present day and future regional climate simulations for Greece. International Journal of Climatology, 29, 1614–1633. https://doi.org/10.1002/joc.1809

    Article  Google Scholar 

  • Zanis, P., Katragkou, E., Ntogras, C., Marougianni, G., et al. (2015). Transient high-resolution regional climate simulation for Greece over the period 1960-2100: Evaluation and future projections. Climate Research, 64, 123–140. https://doi.org/10.3354/cr01304

    Article  Google Scholar 

  • Zerefos, C., et al. (2011). Chapter 1: The climate of the eastern Mediterranean and Greece: Past, present and future. In The environmental, economic and social impacts of climate change in Greece (pp. 1–136). Climate Change Impacts Study Committee, Bank of Greece. ISBN 978-960-7032-49-2

    Google Scholar 

  • Zittis, G., Hadjinicolaou, P., Klangidou, M., et al. (2019). A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Regional Environmental Change, 19, 2621–2635. https://doi.org/10.1007/s10113-019-01565-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Feidas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feidas, H., Karacostas, T., Zanis, P. (2024). The Wonderful Weather of Greece. In: Darques, R., Sidiropoulos, G., Kalabokidis, K. (eds) The Geography of Greece. World Regional Geography Book Series. Springer, Cham. https://doi.org/10.1007/978-3-031-29819-6_24

Download citation

Publish with us

Policies and ethics