Skip to main content

Design and Performance Characterization of a Gripper End-Effector for a Space Berthing Manipulator

  • Conference paper
  • First Online:
New Advances in Mechanisms, Transmissions and Applications (MeTrApp 2023)

Abstract

In this paper the task of berthing is presented with a suitable end-effector design. A geometry-based gripper is designed to capture microsatellites CubeSat on their ribs. To minimize the volume, one d.o.f.-mechanism is designed with a foldable structure. The workability of the design is tested by dynamic simulation to find and check the limitations of the construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler, D.J., Cour-Palais, B.G.: Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978)

    Article  Google Scholar 

  2. Kessler, D.J.: Collisional cascading: the limits of population growth in low earth orbit. Adv. Space Res. 11(12), 63–66 (1991)

    Article  Google Scholar 

  3. Yoshida, K., Hashizume, K., Abiko, S.: Zero reaction maneuver: Flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 441–446 (2001). https://doi.org/10.1109/ROBOT.2001.932590

  4. Bischof, B., Kerstein, L., Starke, J., Guenther,  H., Foth, W.-P., GmbH, A.: ROGER – Robotic Geostationary Orbit Restorer. In: Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, Bremen, Germany, IAC-03-IAA.5.2.08 (2003)

    Google Scholar 

  5. Fehse, W.: Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, New-York (2003)

    Book  Google Scholar 

  6. Testa, B.M.:  Space Station robotics planning tools. In: Fifth Annual Worksh0op on Space Operations Applications and Research (SOAR 1991),  vol. 1, pp. 382–391 (1991)

    Google Scholar 

  7. Laryssa, P.,  et al.: International space station robotics: a comparative study of ERA, JEMRMS and MSS. In: 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation “ASTRA 2002”, Noordwijk, The Netherlands, pp. 1–8 (2002)

    Google Scholar 

  8. Coleshill, E., Oshinowo, L., Rembala, R., Bina, B., Rey, D., Sindelar, S.: Dextre: Improving maintenance operations on the International Space Station. Acta Astronaut. 64(9–10), 869–874 (2009). https://doi.org/10.1016/J.ACTAASTRO.2008.11.011

    Article  Google Scholar 

  9. Boumans, R., Heemskerk, C.: The European robotic arm for the international space station. Robotic Autonom. Syst. 23, 17–27 (1998). https://doi.org/10.1016/S0921-8890(97)00054-7

    Article  Google Scholar 

  10. Kuwao, F., et al.: Operation concept of JEMRMS. In: Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: I-SAIRAS 2003, pp. 19–23 (2003)

    Google Scholar 

  11. Johnstone, A.: CubeSat design specification Rev. 14.1 the CubeSat program. Cal Poly SLO, pp. 1–34 (2022)

    Google Scholar 

  12. Zhang, L.: Configuration optimization for free-floating space robot capturing tumbling target. MDPI Aerospace 9(2), 69–86 (2022). https://doi.org/10.3390/AEROSPACE9020069

    Article  Google Scholar 

  13. Titov, A., Ceccarelli, M.: Problems and requirements for docking operation in orbital stations. In: Niola, V., Gasparetto, A., Quaglia, G., Carbone, G., (eds.) Advances in Italian Mechanism Science. IFToMM Italy 2022. Mechanisms and Machine Science, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-10776-4_19

  14. Titov, A., Ceccarelli, M.: Requirements and problems for space berthing system. In: Proceedings of SYROM 2022 & ROBOTICS 2022, paper 005 (in print) (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Titov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Titov, A., Ceccarelli, M. (2023). Design and Performance Characterization of a Gripper End-Effector for a Space Berthing Manipulator. In: Laribi, M.A., Nelson, C.A., Ceccarelli, M., Zeghloul, S. (eds) New Advances in Mechanisms, Transmissions and Applications. MeTrApp 2023. Mechanisms and Machine Science, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-29815-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29815-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29814-1

  • Online ISBN: 978-3-031-29815-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics