Skip to main content

The Role of Industry 4.0 Technologies in the Energy Transition: Conceptual Design of Intelligent Battery Management System Based on Electrochemical Impedance Spectroscopy Analysis

  • Chapter
  • First Online:
Innovation and Competitiveness in Industry 4.0 Based on Intelligent Systems

Abstract

Electric mobile vehicles are promising technologies intended to accelerate the clean energy transition. In this regard, the battery management system will be critical in deploying this revolution since it might help with cost reduction, life cycling, and battery improvements. Herein, the authors investigated the use of Industry 4.0 (I4.0) technologies by adopting a machine learning approach to develop a tool to assess its versatility in estimating the lifetime of batteries. For this purpose, the authors propose a framework that employs electrochemical impedance spectroscopy (EIS) technique to unveil the batteries’ electrical parameters in real-time or off-line mode and then predict their state of health (SoH) and lifetime. Finally, this chapter proposes a genetic algorithm to solve mathematical equations for the proposed electrical circuit model, which fits the experimental EIS curve under two different stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMS:

battery management system

EIS:

electrochemical impedance spectroscopy

ESD:

energy storage devices

ESS:

energy storage systems

EV:

electric vehicle

DC:

direct current

GA:

genetic algorithm

IoT:

Internet of Things

I4.0:

fourth industrial revolution

LIB:

lithium-ion battery

ResNet:

residual neural network

RUL:

remaining useful life

SEM:

scanning electronic microscopy

SoC:

state of charge

SoH:

state of health

TCN:

temporal convolutional neural

References

  1. Y.E. Durmus et al., Side by side battery technologies with lithium-ion based batteries. Adv. Energy Mater. 10(24), 2000089 (2020). https://doi.org/10.1002/aenm.202000089

    Article  Google Scholar 

  2. C. Song, Y. Shao, S. Song, S. Peng, F. Xiao, A novel electric bicycle battery monitoring system based on android client. J. Eng. 2017, 2579084 (2017)

    Google Scholar 

  3. G. Zhao, X. Wang, M. Negnevitsky, Connecting battery technologies for electric vehicles from battery materials to management. iScience 25(2), 103744 (2022)

    Article  Google Scholar 

  4. T. Gao, W. Lu, Machine learning toward advanced energy storage devices and systems. iScience 24(1), 101936 (2021)

    Article  Google Scholar 

  5. J. Sihvo, D. Stroe, T. Messo, T. Roinila, Fast approach for battery impedance identification using pseudo-random sequence signals. IEEE Trans. Power Electron. 35(3), 2548–2557 (2020)

    Article  Google Scholar 

  6. R. Stadler, A. Maurer, Methods for durability testing and lifetime estimation of thermal Interface materials in batteries. Batteries 5(1) (2019)

    Google Scholar 

  7. S. Hong, T.-C. Lo, Electrochemical impedance spectroscopy for battery Research and Development, in Technical Report, vol. 1, (Solartron Instruments, Farnborough, 1996) Available: https://www.ameteksi.com/-/media/ameteksi/download_links/documentations/library/solartonanalytical/electrochemistry/technical-report-31-hong-shih-eis-for-battery-research.pdf?la=en&revision=6723cd33-7ad6-4eea-81df-a71f4a292f48&hash=906EB05485B83685B9AF08E656BE806E

    Google Scholar 

  8. U.R. Koleti, T.Q. Dinh, J. Marco, A new on-line method for lithium plating detection in lithium-ion batteries. J. Power Sources 451, 227798 (2020)

    Article  Google Scholar 

  9. R. Lu, J. Lu, P. Liu, M. He, J. Liu, Design of the VRLA battery real-time monitoring system based on wireless communication. Sensors 20(15) (2020)

    Google Scholar 

  10. Z. Wei, J. Zhao, H. He, G. Ding, H. Cui, L. Liu, Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement. J. Power Sources 489, 229462 (2021)

    Article  Google Scholar 

  11. D.L. Gong, R.Y. Niu, J. Jin, H. Geng, RFID Technology application in electric Vehicle’s battery charging stations. Adv. Mater. Res. 608–609, 1545–1552 (2013)

    Google Scholar 

  12. H. Yu et al., Big-data-based power battery recycling for new energy vehicles: Information sharing platform and intelligent transportation optimization. IEEE Access 8, 99605–99623 (2020)

    Article  Google Scholar 

  13. E. Ayerbe, M. Berecibar, S. Clark, A.A. Franco, J. Ruhland, Digitalization of battery manufacturing: Current status, challenges, and opportunities. Adv. Energy Mater. 12(17), 2102696 (2022). https://doi.org/10.1002/aenm.202102696

    Article  Google Scholar 

  14. S. Thiede, Digital technologies, methods and tools towards sustainable manufacturing: Does industry 4.0 support to reach environmental targets? Procedia CIRP 98, 1–6 (2021)

    Article  Google Scholar 

  15. T.-C. Chen et al., Development of machine learning methods in hybrid energy storage systems in electric vehicles. Math. Probl. Eng. 2022, 3693263 (2022)

    Google Scholar 

  16. T.T. Pham et al., Industry 4.0 to accelerate the circular economy: A case study of electric scooter sharing. Sustainability 11(23) (2019)

    Google Scholar 

  17. M. Helmy et al., IoT-based battery monitoring system for electric vehicle. Int. J. Eng. Technol. 7, 505–510 (2018)

    Google Scholar 

  18. A. Christensen, A. Adebusuyi, Using on-board electrochemical impedance spectroscopy in battery management systems, in 2013 World Electric Vehicle Symposium and Exhibition (EVS27), (2013), pp. 1–7

    Google Scholar 

  19. W. Li, M. Rentemeister, J. Badeda, D. Jöst, D. Schulte, D.U. Sauer, Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation. J. Energy Storage 30, 101557 (2020)

    Article  Google Scholar 

  20. M.H.S.M. Haram, J.W. Lee, G. Ramasamy, E.E. Ngu, S.P. Thiagarajah, Y.H. Lee, Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges. Alex. Eng. J. 60(5), 4517–4536 (2021)

    Article  Google Scholar 

  21. L. Ahmadi, A. Yip, M. Fowler, S.B. Young, R.A. Fraser, Environmental feasibility of re-use of electric vehicle batteries. Sustain. Energy Technol. Assess. 6, 64–74 (2014)

    Google Scholar 

  22. S. Li, P. Zhao, Big data driven vehicle battery management method: A novel cyber-physical system perspective. J. Energy Storage 33, 102064 (2021)

    Article  Google Scholar 

  23. L. Song, K. Zhang, T. Liang, X. Han, Y. Zhang, Intelligent state of health estimation for lithium-ion battery pack based on big data analysis. J. Energy Storage 32, 101836 (2020)

    Article  Google Scholar 

  24. A. Gairola, IoT based battery management system in electric vehicles, in Bacancy Systems, ed. by B. Technology, vol. 2022, (Bacancy Technology, Sweden, 2022)

    Google Scholar 

  25. M.R.A. Refaai, J.N. Bharothu, T.V.V.P. Kumar, C. Srinivas, M. Sudhakar, A. Bhowmick, Battery energy forecasting in electric vehicle using deep residual neural network. Int. J. Photoenergy 2022, 5959443 (2022)

    Article  Google Scholar 

  26. M.-K. Tran, S. Panchal, T.D. Khang, K. Panchal, R. Fraser, M. Fowler, Concept review of a cloud-based smart battery management system for lithium-ion batteries: Feasibility, logistics, and functionality. Batteries 8(2) (2022)

    Google Scholar 

  27. S. Yang et al., Implementation for a cloud battery management system based on the CHAIN framework. Energy and AI 5, 100088 (2021)

    Article  Google Scholar 

  28. S. Kahveci, B. Alkan, M.A.H. Ahmad, B. Ahmad, R. Harrison, An end-to-end big data analytics platform for IoT-enabled smart factories: A case study of battery module assembly system for electric vehicles. J. Manuf. Syst. 63, 214–223 (2022)

    Article  Google Scholar 

  29. F. Ciucci, Modeling electrochemical impedance spectroscopy. Curr. Opin. Electrochem. 13, 132–139 (2019)

    Article  Google Scholar 

  30. B. Agudelo, W. Ospina, E.M. Zamboni, G. Spagnuolo, Identification of Battery Circuit Model from EIS Data (Presented at the JCGE - Congrès des Jeunes Chercheurs en Génie Electrique, Saint Pierre d’Oléron, France, 2019–06, 2019) Available: https://hal.archives-ouvertes.fr/hal-02915697

  31. L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Article  Google Scholar 

  32. D. Andre, C. Appel, T. Soczka-Guth, D.U. Sauer, Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries. J. Power Sources 224, 20–27 (2013)

    Article  Google Scholar 

  33. U. Tröltzsch, O. Kanoun, H.-R. Tränkler, Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim. Acta 51(8), 1664–1672 (2006)

    Article  Google Scholar 

  34. M.A. El-Shorbagy, A.M. El-Refaey, Hybridization of grasshopper optimization algorithm with genetic algorithm for solving system of non-linear equations. IEEE Access 8, 220944–220961 (2020)

    Article  Google Scholar 

  35. C. Pastor-Fernández, W.D. Widanage, J. Marco, M.Á. Gama-Valdez, G.H. Chouchelamane, Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique, in 2016 IEEE Transportation Electrification Conference and Expo (ITEC), (2016), pp. 1–6

    Google Scholar 

  36. X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, Z. Li, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. J. Power Sources 251, 38–54 (2014)

    Article  Google Scholar 

  37. D.A. Howey, P.D. Mitcheson, V. Yufit, G.J. Offer, N.P. Brandon, Online measurement of battery impedance using motor controller excitation. IEEE Trans. Veh. Technol. 63(6), 2557–2566 (2014)

    Article  Google Scholar 

  38. B. Wimarshana, I. Bin-Mat-Arishad, A. Fly, Parameter sensitivity analysis of a physico-chemical lithium-ion battery model with combined discharge voltage and electrochemical impedance data. J. Power Sources 527, 231125 (2022)

    Article  Google Scholar 

  39. A. Maghawry, R. Hodhod, Y. Omar, M. Kholief, An approach for optimizing multiobjective problems using hybrid genetic algorithms. Soft. Comput. 25(1), 389–405 (2021)

    Article  Google Scholar 

  40. S. Katoch, S.S. Chauhan, V. Kumar, A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 80(5), 8091–8126 (2021)

    Article  Google Scholar 

  41. G. Kannan, P. Sasikumar, K. Devika, A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Appl. Math. Model. 34(3), 655–670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. M.R.A. Refaai, S.N.R. Vonteddu, P.K. Nunna, P.S. Kumar, C. Anbu, M. Markos, Energy management prediction in hybrid PV-battery systems using deep learning architecture. Int. J. Photoenergy 2022, 6844853 (2022)

    Article  Google Scholar 

  43. W. Li, L. Gao, A. Garg, A framework based on big data for intelligent monitoring of battery packs. IOP Conf. Series Earth Environ. Sci. 463(1), 012158 (2020)

    Article  Google Scholar 

  44. A.C. Ngandjong et al., Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: Towards a digital twin of Li-ion battery manufacturing. J. Power Sources 485, 229320 (2021)

    Article  Google Scholar 

  45. Y. Zhang, Q. Tang, Y. Zhang, J. Wang, U. Stimming, A.A. Lee, Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 11(1), 1706 (2020)

    Article  Google Scholar 

  46. Q. Yang, J. Xu, B. Cao, X. Li, A simplified fractional order impedance model and parameter identification method for lithium-ion batteries. PLoS One 12, e0172424 (2017)

    Article  Google Scholar 

  47. Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, Electrochemical impedance spectroscopy study of a lithium/Sulfur battery: Modeling and analysis of capacity fading. J. Electrochem. Soc. 160(4), A553–A558 (2013)

    Article  Google Scholar 

  48. D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth, D.U. Sauer, Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 196(12), 5349–5356 (2011)

    Article  Google Scholar 

  49. D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, D.U. Sauer, Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 196(12), 5334–5341 (2011)

    Article  Google Scholar 

  50. M.R. Shoar Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ionics 180(14), 922–927 (2009)

    Article  Google Scholar 

  51. D. Geringer, P. Hofmann, J. Girard, E. Trunner, W. Knefel, Aging investigations and consideration for automotive high power lithium-ion batteries in a 48 V mild hybrid operating strategy. Automotive and Engine Technology 6(3), 219–234 (2021)

    Article  Google Scholar 

  52. E. Redondo-Iglesias, P. Venet, S. Pelissier, Calendar and cycling ageing combination of batteries in electric vehicles. Microelectron. Reliab. 88-90, 1212–1215 (2018)

    Article  Google Scholar 

  53. W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion batteries. J. Electrochem. Sci. Technol 11(1), 1–13 (2020)

    Article  Google Scholar 

  54. C. Lyu, T. Zhang, W. Luo, G. Wei, B. Ma, L. Wang, SOH estimation of Lithium-ion batteries based on fast time domain impedance spectroscopy, in 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), (2019), pp. 2142–2147

    Chapter  Google Scholar 

  55. N. Somakettarin, A. Pichetjamroen, A study on modeling of effective series resistance for Lithium-ion batteries under life cycle consideration. IOP Conf. Series Earth Environ. Sci. 322(1), 012008 (2019)

    Article  Google Scholar 

  56. M. Grossi, C. Parolin, B. Vitali, B. Riccò, Electrical Impedance Spectroscopy (EIS) characterization of saline solutions with a low-cost portable measurement system. Eng. Sci. Technol. Int. J. 22(1), 102–108 (2019)

    Google Scholar 

  57. J.D. Muñoz, V.H. Mosquera, C.F. Rengifo, A low-cost, portable, two-dimensional bioimpedance distribution estimation system based on the AD5933 impedance converter. HardwareX 11, e00274 (2022)

    Article  Google Scholar 

  58. D.A. Stone, M.P. Foster, E. Ballantyne, H. Price, A low cost, rapid impedance measurement technique suitable for Li-ion health diagnosis in battery energy storage systems. Int. J. Smart Grid Clean Energy 9 (2020)

    Google Scholar 

  59. M. Gaberšček, Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat. Commun. 12(1), 6513 (2021)

    Article  Google Scholar 

  60. J. Hu, X. Xu, D. Cao, T. Zheng, and W. Hao, Research and Application of Electric Vehicle Battery Swapping Technology. Presented at the 2021 2nd International Conference on Artificial Intelligence and Information Systems, Chongqing, China (2021). Available: https://doi.org/10.1145/3469213.3470421

Download references

Acknowledgments

We gratefully acknowledge the time and infrastructure the Polytechnic University of Victoria provided.

Conflict of Interest

The authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Pech-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pech-Rodríguez, W.J., Rocha-Rangel, E., Armendáriz-Mireles, E.N., Suarez-Velázquez, G.G., Ordóñez, L.C. (2023). The Role of Industry 4.0 Technologies in the Energy Transition: Conceptual Design of Intelligent Battery Management System Based on Electrochemical Impedance Spectroscopy Analysis. In: Méndez-González, L.C., Rodríguez-Picón, L.A., Pérez Olguín, I.J.C. (eds) Innovation and Competitiveness in Industry 4.0 Based on Intelligent Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-29775-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29775-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29774-8

  • Online ISBN: 978-3-031-29775-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics