Skip to main content

Feature Selection in Electroencephalographic Signals Using a Multicriteria Decision Analysis Method

  • Chapter
  • First Online:
Innovation and Competitiveness in Industry 4.0 Based on Intelligent Systems

Abstract

In recent years, industry 4.0 has promoted the rise of new technologies and devices that generate and collect data both in industry and in everyday life. As a result, there is a new challenge of creating robust tools that facilitate the analysis of this information. Feature selection allows the efficient extraction of features that describe objects or phenomena, by removing distractors and redundant information. Thus, classification and decision-making models can be created with stable representations. In this chapter, a set of typical testors was extracted from a database with motor imagery EEG signals employing the testor theory, an approach to feature selection. A typical testor is the smallest possible combination of features that allow objects to be differentiated belonging to different classes. The purpose of this chapter is to select the typical testor with the best performance in an ANN classifier employing TOPSIS, a multicriteria decision analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Habib Mireles, Presencia de los pilares de la industria 4.0 en la formación de ingenieros en el noreste de México. Rev. Cuba. Educ. Super. 41(2), 380–396 (2022)

    Google Scholar 

  2. J. Hamilton Ortiz (ed.), Industry 4.0 – Current Status and Future Trends (IntechOpen, London, 2020)

    Google Scholar 

  3. M. Lom, O. Pribyl, M. Svitek, Industry 4.0 as a part of smart cities, in 2016 Smart Cities Symposium Prague (SCSP), May 2016, pp. 1–6. https://doi.org/10.1109/SCSP.2016.7501015

  4. F. Bonete, M. Sánchez Martínez, ‘Smart City’ y patrimonio cultural: las aplicaciones móviles de ciudades patrimonio de la humanidad españolas, in Ciudad y Comunicación, 1st edn., (Grupo de Investigación Arte, Arquitectura y Comunicación en la Ciudad Contemporánea. Universidad Complutense de Madrid, Madrid, 2016), pp. 475–482

    Google Scholar 

  5. J. Yan, Y. Meng, L. Lu, C. Guo, Big-data-driven based intelligent prognostics scheme in industry 4.0 environment, in 2017 Prognostics and System Health Management Conference (PHM-Harbin), July 2017, pp. 1–5. https://doi.org/10.1109/PHM.2017.8079310

  6. P. Chhikara, N. Jain, R. Tekchandani, N. Kumar, Data dimensionality reduction techniques for industry 4.0: Research results, challenges, and future research directions. Softw. Pract. Exp. 52(3), 658–688 (2022). https://doi.org/10.1002/spe.2876

    Article  Google Scholar 

  7. J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A new perspective. Neurocomputing 300 (2018). https://doi.org/10.1016/j.neucom.2017.11.077

  8. S. Pilgramm et al., Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Hum. Brain Mapp. 37(1) (2016). https://doi.org/10.1002/hbm.23015

  9. V.I. González-Guevara, S. Godoy-Calderon, E. Alba-Cabrera, J. Ibarra-Fiallo, A mixed learning strategy for finding typical testors in large datasets, in Progress Pattern Recognition, Image Analysis Computer Vision, Application CIARP 2015, Lecture Notes Computer Science, vol. 9423, (Springer, Cham, 2015), pp. 716–723. https://doi.org/10.1007/978-3-319-25751-8_86

    Chapter  Google Scholar 

  10. J. Ruíz Shucloper, E. Alba Cabrera, M. Lazo Cortés, Introducción a la Teoría de Testores (Departamento de Ingeniería Electrica, CINVESTAV-IPN, 1995), p. 197

    Google Scholar 

  11. A. Bousdekis, K. Lepenioti, D. Apostolou, G. Mentzas, A review of data-driven decision-making methods for industry 4.0 maintenance applications. Electronics 10(7), 828 (2021). https://doi.org/10.3390/electronics10070828

    Article  Google Scholar 

  12. F. Rosin, P. Forget, S. Lamouri, R. Pellerin, Impact of industry 4.0 on decision-making in an operational context. Adv. Prod. Eng. Manag. 16(4), 500–514 (2021). https://doi.org/10.14743/apem2021.4.416

    Article  Google Scholar 

  13. F. Rosin, P. Forget, S. Lamouri, R. Pellerin, Enhancing the decision-making process through industry 4.0 technologies. Sustainability 14(1), 461 (2022). https://doi.org/10.3390/su14010461

    Article  Google Scholar 

  14. N. Medic, Z. Anisic, B. Lalic, U. Marjanovic, M. Brezocnik, Hybrid fuzzy multi-attribute decision making model for evaluation of advanced digital technologies in manufacturing: Industry 4.0 perspective. Adv. Prod. Eng. Manag. 14(4), 483–493 (2019). https://doi.org/10.14743/apem2019.4.343

    Article  Google Scholar 

  15. M.L. Hoffmann Souza, C.A. da Costa, G. de Oliveira Ramos, R. da Rosa Righi, A survey on decision-making based on system reliability in the context of industry 4.0. J. Manuf. Syst. 56, 133–156 (2020). https://doi.org/10.1016/j.jmsy.2020.05.016

    Article  Google Scholar 

  16. A. Mardani, A. Jusoh, K. MD Nor, Z. Khalifah, N. Zakwan, A. Valipour, Multiple criteria decision-making techniques and their applications – A review of the literature from 2000 to 2014. Econ. Res. Istraživanja 28(1), 516–571 (2015). https://doi.org/10.1080/1331677X.2015.1075139

    Article  Google Scholar 

  17. M. Cinteza, Maedica-a journal of clinical medicine editorial point of ViEw editorial point of ViEw industry 4.0 and medicine. Maedica A J. Clin. Med. 16(2) (2021). https://doi.org/10.26574/maedica.2021.16.2.161

  18. J.L. Sampietro-Saquicela, Transformación Digital de la Industria 4.0 Digital Transformation of Industry 4.0 Transformação digital da indústria 4.0. Polo del Conocimiento, 5, 1344–1356 (2020). https://doi.org/10.23857/pc.v5i8.1666

  19. M. Sachon, Cuando personas y máquinas trabajan juntos: Los pilares de la industria 4.0. IEEM Rev. Negocios 21(2), 46–54 (2018)

    Google Scholar 

  20. G. Erboz, How to define industry 4.0: Main pillars of industry 4.0, in Managerial Trends in the Development of Enterprises in Globalization era, ed. by I. Košičiarová, Kádeková, Zdenka, (Nitra, Slovak: Slovak University of Agriculture in Nitra, 2017), pp. 761–777

    Google Scholar 

  21. S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 – A glimpse. Procedia Manuf. 20, 233–238 (2018). https://doi.org/10.1016/j.promfg.2018.02.034

    Article  Google Scholar 

  22. L. Joyanes Aguilar, Industria 4.0 La cuarta revolución industrial, 1st edn. (Alfaomega, Mexico City, 2017)

    Google Scholar 

  23. A. Landa, Los 9 pilares de la industria 4.0, Industria 4.0. Linkedin, Jun. 02, 2021. Accessed 05 July 2022. [Online]. Available: https://www.linkedin.com/pulse/los-9-pilares-de-la-industria-40-aitor-landa/?originalSubdomain=es

  24. D.-N. Le, C. Le, J. Tromp, N. Nhu, Emerging Technologies for Health and Medicine, (United States: Scrivener Publishing, 2018). https://doi.org/10.1002/9781119509875

  25. C. Thuemmler, C. Bai, Health 4.0: Application of industry 4.0 design principles in future asthma management, in Health 4.0: How Virtualization and Big Data Are Revolutionizing Healthcare, (Springer, Cham, 2017), pp. 23–37

    Chapter  Google Scholar 

  26. V.V. Popov, E.V. Kudryavtseva, N. Kumar Katiyar, A. Shishkin, S.I. Stepanov, S. Goel, Industry 4.0 and digitalisation in healthcare. Materials (Basel). 15(6), 2140 (2022). https://doi.org/10.3390/ma15062140

    Article  Google Scholar 

  27. G. Aceto, V. Persico, A. Pescapé, Industry 4.0 and health: Internet of Things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 18, 100129 (2020). https://doi.org/10.1016/j.jii.2020.100129

    Article  Google Scholar 

  28. N. Mohamed, J. Al-Jaroodi, The impact of industry 4.0 on healthcare system engineering, in 2019 IEEE International Systems Conference (SysCon), April 2019, pp. 1–7. https://doi.org/10.1109/SYSCON.2019.8836715

  29. M.M. Ahsan, Z. Siddique, Industry 4.0 in healthcare: A systematic review. Int. J. Inf. Manag. Data Insights 2(1) (2022). https://doi.org/10.1016/j.jjimei.2022.100079

  30. L. Lhotska, Application of industry 4.0 concept to health care. Stud. Health Technol. Inform. 273, 23–37 (2020). https://doi.org/10.3233/SHTI200613

    Article  Google Scholar 

  31. S. Paul et al., Industry 4.0 applications for medical/healthcare services. J. Sens. Actuator Netw. 10(3). 2021. MDPI AG. https://doi.org/10.3390/jsan10030043

  32. A. Tedesco, D. Dallet, P. Arpaia, Augmented Reality (AR) and Brain-Computer Interface (BCI): Two enabling technologies for empowering the fruition of sensor data in the 4.0 era, in AISEM Annual Conference on Sensors and Microsystems (Springer Link, 2021), pp. 85–91

    Google Scholar 

  33. A. Biasiucci, B. Franceschiello, M.M. Murray, Electroencephalography. Curr. Biol. 29(3) (2019). https://doi.org/10.1016/j.cub.2018.11.052

  34. G. Coro, G. Masetti, P. Bonhoeffer, M. Betcher, Distinguishing violinists and pianists based on their brain signals, in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 11727, (Springer Cham, Edinburgh 2019), pp. 123–137. https://doi.org/10.1007/978-3-030-30487-4_11

    Chapter  Google Scholar 

  35. J.S. Kumar, P. Bhuvaneswari, Analysis of electroencephalography (EEG) signals and its categorization–a study. Procedia Eng. 38 (2012). https://doi.org/10.1016/j.proeng.2012.06.298

  36. A. Craik, Y. He, J.L. Contreras-Vidal, Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 16(3), 031001 (2019). https://doi.org/10.1088/1741-2552/ab0ab5

    Article  Google Scholar 

  37. M. de Bardeci, C.T. Ip, S. Olbrich, Deep learning applied to electroencephalogram data in mental disorders: A systematic review. Biol. Psychol. 162, 108117 (2021). https://doi.org/10.1016/j.biopsycho.2021.108117

    Article  Google Scholar 

  38. S. Siuly, Y. Li, Y. Zhang, Electroencephalogram (EEG) and its background, in EEG Signal Analysis and Classification, (Springer, Cham, 2016), pp. 3–21

    Chapter  Google Scholar 

  39. A. Ioanid, C. Scarlat, Neuromarketing tools in industry 4.0 context: A study on the Romanian market, in The 15th International Conference Interdisciplinarity in Engineering, 2022, pp. 370–381

    Google Scholar 

  40. J. Villalba-Diez, X. Zheng, D. Schmidt, M. Molina, Characterization of industry 4.0 lean management problem-solving behavioral patterns using EEG sensors and deep learning. Sensors 19(13), 2841 (2019). https://doi.org/10.3390/s19132841

    Article  Google Scholar 

  41. K.D. Tzimourta et al., Analysis of electroencephalographic signals complexity regarding Alzheimer’s disease. Comput. Electr. Eng. 76, 198–212 (2019). https://doi.org/10.1016/j.compeleceng.2019.03.018

    Article  Google Scholar 

  42. L.M. Peñuela Calderón, N.E. Caicedo Gutierrez, Detección de dolor apartir de señales de EEG. Rev. EIA 19(38) (2022). https://doi.org/10.24050/reia.v19i38.1577

  43. T. Schack, K. Essig, C. Frank, D. Koester, Mental representation and motor imagery training. Front. Hum. Neurosci. 8 (2014). https://doi.org/10.3389/fnhum.2014.00328

  44. V. Nicholson, N. Watts, Y. Chani, J.W.L. Keogh, Motor imagery training improves balance and mobility outcomes in older adults: A systematic review. J. Physiother. 65(4), 200–207 (2019). https://doi.org/10.1016/j.jphys.2019.08.007

    Article  Google Scholar 

  45. C. Ruffino, J. Gaveau, C. Papaxanthis, F. Lebon, An acute session of motor imagery training induces use-dependent plasticity. Sci. Rep. 9(1), 20002 (2019). https://doi.org/10.1038/s41598-019-56628-z

    Article  Google Scholar 

  46. R. Dickstein, J.E. Deutsch, Motor imagery in physical therapist practice. Phys. Ther. 87(7), 942–953 (2007). https://doi.org/10.2522/ptj.20060331

    Article  Google Scholar 

  47. V.P. Nicholson, J.W.L. Keogh, N.L.L. Choy, Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial. Clin. Interv. Aging 13 (2018). https://doi.org/10.2147/CIA.S164401

  48. S. Kumar, A. Sharma, K. Mamun, T. Tsunoda, A deep learning approach for motor imagery EEG signal classification, in 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), 2016. https://doi.org/10.1109/APWC-on-CSE.2016.017

  49. S.R. Sreeja, J. Rabha, K.Y. Nagarjuna, D. Samanta, P. Mitra, M. Sarma, Motor imagery EEG signal processing and classification using machine learning approach, in 2017 International Conference on New Trends in Computing Sciences (ICTCS), 2017. https://doi.org/10.1109/ICTCS.2017.15

  50. M. Erdogan, B. Ozkan, A. Karasan, I. Kaya, Selecting the best strategy for industry 4.0 applications with a case study, in Industrial Engineering in the Industry 4.0 Era, (Springer, Cham, 2018), pp. 109–119

    Chapter  Google Scholar 

  51. V. Terziyan, S. Gryshko, M. Golovianko, Patented intelligence: Cloning human decision models for industry 4.0. J. Manuf. Syst. 48, 204–217 (2018). https://doi.org/10.1016/j.jmsy.2018.04.019

    Article  Google Scholar 

  52. J. Mayor, S. Botero, J.D. González-Ruiz, Modelo de decisión multicriterio difuso para la selección de contratistas en proyectos de infraestructura: caso Colombia. Obras y Proy. 20, 56–74 (2016). Accessed 13 Mar 2022. [Online]. Available: https://scielo.conicyt.cl/pdf/oyp/n20/art05.pdf

  53. A. Jahan, K.L. Edwards, M. Bahraminasab, 4 – multi-criteria decision-making for materials selection, in Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, ed. by A. Jahan, K.L. Edwards, M. Bahraminasab, 2nd edn., (Butterworth-Heinemann, Oxford, 2016), pp. 63–80

    Chapter  Google Scholar 

  54. A. Kolios, V. Mytilinou, E. Lozano-Minguez, K. Salonitis, A comparative study of multiple-criteria decision-making methods under stochastic inputs. Energies 9(7) (2016). https://doi.org/10.3390/en9070566

  55. H. Karunathilake, E. Bakhtavar, G. Chhipi-Shrestha, H.R. Mian, K. Hewage, R. Sadiq, Chapter seven – decision making for risk management: A multi-criteria perspective, in Methods in Chemical Process Safety, ed. by F.I. Khan, P.R. Amyotte, vol. 4, (Elsevier, Cambridge, 2020), pp. 239–287

    Google Scholar 

  56. B. Ceballos, M.T. Lamata, D. Pelta, J.M. Sanchez, EL MÉTODO TOPSIS RELATIVO VS. ABSOLUTO. Rev. Electrónica Comun. y Trab. ASEPUMA 14, 181–192 (2013)

    Google Scholar 

  57. E. Triantaphyllou, Multi-criteria decision making methods, in Multi-Criteria Decision Making Methods: A Comparative Study, ed. by E. Triantaphyllou, (Springer, Boston, 2000), pp. 5–21

    Chapter  MATH  Google Scholar 

  58. W. Sałabun, A. Piegat, Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artif. Intell. Rev. 48(4), 557–571 (2017). https://doi.org/10.1007/s10462-016-9511-9

    Article  Google Scholar 

  59. J. Damidavičius, M. Burinskiene, J. Antuchevičiene, Assessing sustainable mobility measures applying multicriteria decision making methods. Sustainability 12(15) (2020). https://doi.org/10.3390/su12156067

  60. I. Siksnelyte, E. Zavadskas, D. Streimikiene, D. Sharma, An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 11(10), 2754 (2018). https://doi.org/10.3390/en11102754

    Article  Google Scholar 

  61. E.A. Adalı, A. Tuş, Hospital site selection with distance-based multi-criteria decision-making methods. Int. J. Healthc. Manag. 14(2), 534–544 (2021). https://doi.org/10.1080/20479700.2019.1674005

    Article  Google Scholar 

  62. X. Zhongyou, Study on the application of TOPSIS method to the introduction of foreign players in CBA games. Phys. Procedia 33, 2034–2039 (2012). https://doi.org/10.1016/j.phpro.2012.05.320

    Article  Google Scholar 

  63. V. Yadav, S. Karmakar, P.P. Kalbar, A.K. Dikshit, PyTOPS: A Python based tool for TOPSIS. SoftwareX 9 (2019). https://doi.org/10.1016/j.softx.2019.02.004

  64. M. Miguel Ángel Quiroz Martínez, S. Ginnette Andreina Granda Villon, S. Davis Israel Maldonado Cevallos, M. Yelandi Leyva Vázquez, Comparative analysis to select an emotion recognition tool applying fuzzy decision maps and TOPSIS. Dilemas Contemp. Educ. Política y Valores 6(6), 453–463 (2020)

    Google Scholar 

  65. L. Pérez-Domínguez, J. Luis Macías-García, K. Yohana Sánchez-Mojica, D. Luviano-Cruz, Comparación Método multi-criterio TOPSIS y MOORA para la optimización de un proceso de inyección de plástico. Mundo Fesc (14), 98–105 (2017). [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6559177

  66. X. Zhou, Y. Hu, W. Liang, J. Ma, Q. Jin, Variational LSTM enhanced anomaly detection for industrial big data. IEEE Trans. Industr. Inform. 17(5), 3469–3477 (2021). https://doi.org/10.1109/TII.2020.3022432

    Article  Google Scholar 

  67. I.H. Sarker, Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 160 (2021). https://doi.org/10.1007/s42979-021-00592-x

    Article  Google Scholar 

  68. B. Bajic, I. Cosic, M. Lazarevic, N. Sremčev, A. Rikalovic, Machine learning techniques for smart manufacturing: Applications and challenges in industry 4.0, in 9th International Scientific and Expert Conference TEAM 2018, (2018), pp. 29–38. Available: https://www.researchgate.net/publication/328290180_ Machine_Learning_Techniques_for_Smart_Manufacturing_Applications_and_Challenges_ in_Industry_40

  69. A.A.A. Elhag, High-dimensional learning, in Towards Data Science (2022). https://towardsdatascience.com/high-dimensional-learning-ea6131785802. Accessed 10 July 2022

  70. S. Theodoridis, K. Koutroumbas, Chapter 1 – introduction, in Pattern Recognition, ed. by S. Theodoridis, K. Koutroumbas, 4th edn., (Academic, Boston, 2009), pp. 1–12

    MATH  Google Scholar 

  71. V. Rodríguez-Diez, J.F. Martínez-Trinidad, J.A. Carrasco-Ochoa, M. Lazo-Cortés, C. Feregrino-Uribe, R. Cumplido, A fast hardware software platform for computing irreducible testors. Expert Syst. Appl. 42(24), 9612–9619 (2015). https://doi.org/10.1016/j.eswa.2015.07.037

    Article  Google Scholar 

  72. B. Venkatesh, J. Anuradha, A review of feature selection and its methods. Cybern. Inf. Technol. 19(1), 3–26 (2019). https://doi.org/10.2478/CAIT-2019-0001

    Article  MathSciNet  Google Scholar 

  73. N. Martínez, M. León, Z. García, Features selection through FS-testors in case-based systems of teaching-learning, in MICAI 2007: Advances in Artificial Intelligence, 2007, pp. 1206–1217

    Google Scholar 

  74. I. Mejía-Guevara, A. Kuri, Evolutionary Feature and Parameter Selection in Support Vector Regression, Lecture Notes in Artificial Intelligence (LNAI), vol. 4827 (Springer, Heidelberg, Berlin 2007)

    Google Scholar 

  75. J.F. Martínez-Trinidad, A. Guzman-Arenas, The logical combinatorial approach to pattern recognition, an overview through selected works. Pattern Recogn. 34, 741–751 (2001). https://doi.org/10.1016/S0031-3203(00)00027-3

    Article  MATH  Google Scholar 

  76. M. Lazo-Cortes, J. Ruiz-Shulcloper, E. Alba-Cabrera, An overview of the evolution of the concept of testor. Pattern Recogn. 34(4), 753–762 (2001). https://doi.org/10.1016/S0031-3203(00)00028-5

    Article  MATH  Google Scholar 

  77. V. Rodríguez-Diez, J.F. Martínez-Trinidad, J.A. Carrasco-Ochoa, M.S. Lazo-Cortés, The impact of basic matrix dimension on the performance of algorithms for computing typical Testors, in 10th Mexican Conference, MCPR 2018, (México: Springer, 2018), pp. 41–50. https://doi.org/10.1007/978-3-319-92198-3_5

  78. A. Lias-Rodríguez, A. Pons-Porrata, Un nuevo Algoritmo de Escala Exterior para el Cálculo de los Testores Típicos (Centro de Estudios de Reconocimiento de Patrones y Minería de Datos, Santiago de Cuba, 2005), p. 10. [Online]. Available: http://www.cerpamid.co.cu/sitio/files/publicaciones/1034921953BR_RECPAT09.pdf

  79. J.P. Gómez, F.E.H. Montero, J.C. Sotelo, J.C.G. Mancilla, Y.V. Rey, RoPM: An algorithm for computing typical testors based on recursive reductions of the basic matrix. IEEE Access 9, 128220–128232 (2021). https://doi.org/10.1109/ACCESS.2021.3112385

    Article  Google Scholar 

  80. A.E. Gallegos Acosta, F.J. Álvarez Rodríguez, M.D. Torres Soto, A. Torres Soto, Identificación de factores de riesgo en patologías médicas mediante métodos de selección de subconjuntos de características [recurso electrónico] (Universidad Autónoma de Aguascalientes, Aguascalientes, 2018)

    Google Scholar 

  81. R.A. Vázquez, S. Godoy-Calderón, Using testor theory to reduce the dimension of neural network models. Res. Comput. Sci. 28, 93–103 (2007)

    Google Scholar 

  82. G.R. Yang, X.-J. Wang, Artificial neural networks for neuroscientists: A primer. Neuron 107(6), 1048–1070 (2020). https://doi.org/10.1016/j.neuron.2020.09.005

    Article  Google Scholar 

  83. O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: A survey. Heliyon 4(11), e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  84. J. Ribeiro, R. Lima, T. Eckhardt, S. Paiva, Robotic process automation and artificial intelligence in industry 4.0 – A literature review. Procedia Comput. Sci. 181, 51–58 (2021). https://doi.org/10.1016/j.procs.2021.01.104

    Article  Google Scholar 

  85. F. Rozo-García, Revisión de las tecnologías presentes en la industria 4.0. Rev. UIS Ing. 19(2), 177–191 (2020). https://doi.org/10.18273/revuin.v19n2-2020019

    Article  Google Scholar 

  86. C.A. Guaillazaca González, A. Valeria Hernandez, Clasificador de Productos Agrícolas para Control de Calidad basado en Machine Learning e Industria 4.0. Rev. Perspect. 2(2), 21–28 (2020). https://doi.org/10.47187/perspectivas.vol2iss2.pp21-28.2020

    Article  Google Scholar 

  87. J.M. Peña Lorenzo, Aplicación de técnicas de aprendizaje profundo (deep learning) para la detección de objetos en industria 4.0 (Universidad de Valladolid, Valladolid, 2020)

    Google Scholar 

  88. N.V. Ramírez Pérez, M. Laguna Estrada, N.N. Rubín Ramírez, UN ACERCAMIENTO A LA INDUSTRIA 4.0 A TRAVÉS DE REDES NEURONALES PARA LA REDUCCIÓN DE SCRAP EN UNA EMPRESA AUTOMOTRÍZ. Pist. Educ. 41(133), 551–568 (2019). Accessed 11 July 2022. [Online]. Available: http://www.itc.mx/ojs/index.php/pistas/article/view/2144

  89. M. Medina Carmona, J.V. Sánchez Andrés, La Electricidad del Cerebro: Los Secretos de la Actividad Cerebral, 1st edn. (National Geographic, México, 2017)

    Google Scholar 

  90. W. Rivas-Asanza, B. Mazon-Olivo, F. Mejia, Capítulo 1: Generalidades de las redes neuronales artificiales, in Redes Neuronales Artificiales Aplicadas al Reconocimiento de Patrones, (Universidad Técnica de Machala, Washington, DC, 2018), pp. 11–35

    Google Scholar 

  91. O.I. Abiodun et al., Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 7, 158820–158846 (2019). https://doi.org/10.1109/ACCESS.2019.2945545

    Article  Google Scholar 

  92. I.A. Basheer, M. Hajmeer, Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000). https://doi.org/10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  93. Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu, Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 8(1), 42 (2019). https://doi.org/10.1038/s41377-019-0151-0

    Article  Google Scholar 

  94. F. Amato, A. López, E.M. Peña-Méndez, P. Vaňhara, A. Hampl, J. Havel, Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11(2) (2013). https://doi.org/10.2478/v10136-012-0031-x

  95. S. Parra, M. Torrens, La Inteligencia Artificial: el camino hacia la ultrainteligencia (RBA Coleccionables, Barcelona, 2017)

    Google Scholar 

  96. R. Sánchez-Reolid, A. García, M. Vicente-Querol, L. Fernández-Aguilar, M. López, A. González, Artificial neural networks to assess emotional states from brain-computer interface. Electronics 7(12), 384 (2018). https://doi.org/10.3390/electronics7120384

    Article  Google Scholar 

  97. A.E. Gallegos Acosta, M.D. Torres Soto, A. Torres Soto, E.E. Ponce de León Sentí, Contrastación de algoritmos de aprendizaje automático para la clasificación de señales EEG. Res. Comput. Sci. 148(8), 515–525 2020. Accessed 15 Apr 2021. [Online]. Available: https://www.rcs.cic.ipn.mx/2020_149_8/Contrastacion de algoritmos de aprendizaje automatico para la clasificacion de senales EEG.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Edmundo Gallegos Acosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallegos Acosta, A.E., Torres Soto, M.D., Torres Soto, A., Ponce de León Sentí, E.E., Ochoa Ortiz Zezzatti, C.A. (2023). Feature Selection in Electroencephalographic Signals Using a Multicriteria Decision Analysis Method. In: Méndez-González, L.C., Rodríguez-Picón, L.A., Pérez Olguín, I.J.C. (eds) Innovation and Competitiveness in Industry 4.0 Based on Intelligent Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-29775-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29775-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29774-8

  • Online ISBN: 978-3-031-29775-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics