Skip to main content

Immune Profiling of Meningiomas

  • Chapter
  • First Online:
Biological and Clinical Landscape of Meningiomas

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1416))

  • 707 Accesses

Abstract

Though meningiomas are generally regarded as benign tumors, there is increasing awareness of a large group of meningiomas that are biologically aggressive and refractory to the current standards of care treatment modalities. Coinciding with this has been increasing recognition of the important that the immune system plays in mediating tumor growth and response to therapy. To address this point, immunotherapy has been leveraged for several other cancers such as lung, melanoma, and recently glioblastoma in the context of clinical trials. However, first deciphering the immune composition of meningiomas is essential in order to determine the feasibility of similar therapies for these tumors. Here in this chapter, we review recent updates on characterizing the immune microenvironment of meningiomas and identify potential immunological targets that hold promise for future immunotherapy trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanier LL. NK cell recognition. Annu. Rev. Immunol. 2005; 23:225–274.

    Article  CAS  PubMed  Google Scholar 

  2. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annual review of immunology. 2002; 20(1):323–370.

    Article  CAS  PubMed  Google Scholar 

  3. Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nature Reviews Cancer. 2020; 20(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  4. Medawar PD. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. British Journal of Experimental Pathology. 1948; 29(1):58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science translational medicine. 2012; 4(147):147ra111–147ra111.

    Article  Google Scholar 

  6. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Scientific reports. 2018; 8(1):1–10.

    Article  Google Scholar 

  7. Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature neuroscience. 2018; 21(10):1380–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 523(7560):337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schläger C, Körner H, Krueger M, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016; 530(7590):349–353.

    Article  PubMed  Google Scholar 

  10. Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nature communications. 2014; 5(1):1–15.

    Article  Google Scholar 

  11. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nature immunology. 2013; 14(10):1014–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowman RL, Klemm F, Akkari L, et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell reports. 2016; 17(9):2445–2459.

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Feng X, Herting CJ, et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer research. 2017; 77(9):2266–2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nature neuroscience. 2016; 19(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature cell biology. 2015; 17(2):170–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uyttenhove C, Pilotte L, Théate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nature medicine. 2003; 9(10):1269–1274.

    Article  CAS  PubMed  Google Scholar 

  17. Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clinical cancer research. 2012; 18(22):6110–6121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia. 2002; 40(2):252–259.

    Article  PubMed  Google Scholar 

  19. Fang L, Lowther DE, Meizlish ML, et al. The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells. Neuro-oncology. 2013; 15(11):1479–1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology. 2010; 129(4):474–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Du Y, Lin X, Qian Y, Zhou T, Huang Z. CD4+ CD25+ regulatory T cells in tumor immunity. International immunopharmacology. 2016; 34:244–249.

    Article  CAS  PubMed  Google Scholar 

  22. Verma A, Mathur R, Farooque A, Kaul V, Gupta S, Dwarakanath BS. T-Regulatory Cells In Tumor Progression And Therapy. Cancer Management and Research. 2019; 11:10731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nielsen JS, Nelson BH. Tumor-infiltrating B cells and T cells: Working together to promote patient survival. Oncoimmunology. 2012; 1(9):1623–1625.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010; 185(9):4977–4982.

    Article  CAS  PubMed  Google Scholar 

  25. Ding Y, Qiu L, Xu Q, Song L, Yang S, Yang T. Relationships between tumor microenvironment and clinicopathological parameters in meningioma. Int J Clin Exp Pathol. 2014; 7(10):6973–6979.

    PubMed  PubMed Central  Google Scholar 

  26. Rossi ML, Cruz Sanchez F, Hughes JT, Esiri MM, Coakham HB. Immunocytochemical study of the cellular immune response in meningiomas. J Clin Pathol. 1988; 41(3):314–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grund S, Schittenhelm J, Roser F, et al. The microglial/macrophagic response at the tumour–brain border of invasive meningiomas. Neuropathology and Applied Neurobiology. 2009; 35(1):82–88.

    Article  CAS  PubMed  Google Scholar 

  28. Domingues PH, Teodósio C, Otero Á, et al. Association between inflammatory infiltrates and isolated monosomy 22/del (22q) in meningiomas. PloS one. 2013; 8(10):e74798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frankenberger M, Passlick B, Hofer T, Siebeck M, Maier KL, Ziegler-Heitbrock LH. Immunologic characterization of normal human pleural macrophages. American journal of respiratory cell and molecular biology. 2000; 23(3):419–426.

    Article  CAS  PubMed  Google Scholar 

  30. Andreesen R, Brugger W, Scheibenbogen C, et al. Surface phenotype analysis of human monocyte to macrophage maturation. Journal of leukocyte biology. 1990; 47(6):490–497.

    Article  CAS  PubMed  Google Scholar 

  31. Presta I, Guadagno E, Di Vito A, et al. Innate immunity may play a role in growth and relapse of chordoid meningioma. Int J Immunopathol Pharmacol. 2017; 30(4):429–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dubinski D, Wölfer J, Hasselblatt M, et al. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol. 2016; 18(6):807–818.

    Article  CAS  PubMed  Google Scholar 

  33. Gielen PR, Schulte BM, Kers-Rebel ED, et al. Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol. 2015; 74(5):390–400.

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues JC, Gonzalez GC, Zhang L, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-oncology. 2010; 12(4):351–365.

    Article  CAS  PubMed  Google Scholar 

  35. Pinton L, Solito S, Masetto E, et al. Immunosuppressive activity of tumor-infiltrating myeloid cells in patients with meningioma. Oncoimmunology. 2018; 7(7):e1440931.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Liechty B, Patel S, et al. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol. 2018; 138(1):183–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016; 7:12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zador Z, Landry AP, Balas M, Cusimano MD. Landscape of immune cell gene expression is unique in predominantly WHO grade 1 skull base meningiomas when compared to convexity. Sci Rep. 2020; 10(1):9065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aponte-López A, Fuentes-Pananá EM, Cortes-Muñoz D, Muñoz-Cruz S. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer. J Immunol Res. 2018; 2018:2584243.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Polyzoidis S, Koletsa T, Panagiotidou S, Ashkan K, Theoharides TC. Mast cells in meningiomas and brain inflammation. J Neuroinflammation. 2015; 12:170.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Du Z, Abedalthagafi M, Aizer AA, et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget. 2015; 6(7):4704.

    Article  PubMed  Google Scholar 

  42. Garzon-Muvdi T, Bailey DD, Pernik MN, Pan E. Basis for Immunotherapy for Treatment of Meningiomas. Front Neurol. 2020; 11:945.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun Z, Fourcade J, Pagliano O, et al. IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer research. 2015; 75(8):1635–1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nature Reviews Immunology. 2008; 8(6):467–477.

    Article  CAS  PubMed  Google Scholar 

  45. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017; 541(7637):321–330.

    Article  CAS  PubMed  Google Scholar 

  46. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences. 2001; 98(24):13866–13871.

    Article  CAS  Google Scholar 

  47. Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer research. 2006; 66(7):3381–3385.

    Article  CAS  PubMed  Google Scholar 

  48. Gadiot J, Hooijkaas AI, Kaiser AD, van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer. 2011; 117(10):2192–2201.

    Article  CAS  PubMed  Google Scholar 

  49. Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clinical therapeutics. 2015; 37(4):764–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Proctor DT, Patel Z, Lama S, Resch L, van Marle G, Sutherland GR. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma. Oncoimmunology. 2019; 8(1):e1512943.

    Article  PubMed  Google Scholar 

  51. Han SJ, Reis G, Kohanbash G, et al. Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. Journal of neuro-oncology. 2016; 130(3):543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Domingues P, González-Tablas M, Otero Á, et al. Tumor infiltrating immune cells in gliomas and meningiomas. Brain, behavior, and immunity. 2016; 53:1–15.

    Article  CAS  PubMed  Google Scholar 

  53. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clinical cancer research. 2013; 19(12):3165–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li YD, Veliceasa D, Lamano JB, et al. Systemic and local immunosuppression in patients with high-grade meningiomas. Cancer Immunol Immunother. 2019; 68(6):999–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karimi S, Mansouri S, Mamatjan Y, et al. Programmed death ligand-1 (PD-L1) expression in meningioma; prognostic significance and its association with hypoxia and NFKB2 expression. Scientific reports. 2020; 10(1):1–13.

    Article  Google Scholar 

  56. Baldwin Jr AS. The NF-κB and IκB proteins: new discoveries and insights. Annual review of immunology. 1996; 14(1):649–681.

    Article  CAS  PubMed  Google Scholar 

  57. Huang G, Wen Q, Zhao Y, Gao Q, Bai Y. NF-κB plays a key role in inducing CD274 expression in human monocytes after lipopolysaccharide treatment. PloS one. 2013; 8(4):e61602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016; 27(3):409–416.

    Article  CAS  PubMed  Google Scholar 

  59. Pinato DJ, Black JR, Trousil S, et al. Programmed cell death ligands expression in phaeochromocytomas and paragangliomas: Relationship with the hypoxic response, immune evasion and malignant behavior. Oncoimmunology. 2017; 6(11):e1358332.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yearley JH, Gibson C, Yu N, et al. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. Clin Cancer Res. 2017; 23(12):3158–3167.

    Article  CAS  PubMed  Google Scholar 

  61. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014; 515(7528):563–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017; 390(10105):1853–1862.

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Chong KK, Nakamura Y, et al. B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J Invest Dermatol. 2013; 133(8):2050–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zang X, Thompson RH, Al-Ahmadie HA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A. 2007; 104(49):19458–19463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zang X, Sullivan PS, Soslow RA, et al. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod Pathol. 2010; 23(8):1104–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ingebrigtsen VA, Boye K, Nesland JM, Nesbakken A, Flatmark K, Fodstad Ø. B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer. 2014; 14:602.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sun Y, Wang Y, Zhao J, et al. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer. 2006; 53(2):143–151.

    Article  PubMed  Google Scholar 

  68. Benzon B, Zhao SG, Haffner MC, et al. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 2017; 20(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  69. Flem-Karlsen K, Fodstad Ø, Tan M, Nunes-Xavier CE. B7-H3 in Cancer – Beyond Immune Regulation. Trends Cancer. 2018; 4(6):401–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Nassiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J.Z., Nassiri, F., Bi, L., Zadeh, G. (2023). Immune Profiling of Meningiomas. In: Zadeh, G., Goldbrunner, R., Krischek, B., Nassiri, F. (eds) Biological and Clinical Landscape of Meningiomas. Advances in Experimental Medicine and Biology, vol 1416. Springer, Cham. https://doi.org/10.1007/978-3-031-29750-2_14

Download citation

Publish with us

Policies and ethics