Skip to main content

Gene Therapy and Germline Cells Research

  • Chapter
  • First Online:
Handbook of Bioethical Decisions. Volume I

Part of the book series: Collaborative Bioethics ((CB,volume 2))

  • 594 Accesses

Abstract

This chapter is aimed at providing the reader with an overview of the phenomenological complexity created by Gene Therapy and Germline Cell Research that has revolutionized bioethical and biojuridical debate. To achieve this goal, this chapter opens with a brief introduction to the technical highlights of Gene Therapy and Germline Cell Research and the different applications that are possible today, especially considering the innovations arising from CRISPR/Cas9 tool. The chapter continues with some reflections on the very concept of therapy, questioning the classic dichotomy between therapeutic and non-therapeutic purposes, and with an analysis of the most common bioethical and biojuridical arguments. Having established certain technical-scientific and epistemological bases, this work is intended to illustrate the complexity of ethical and social implications of Gene Therapy and Germline Cell Research and the many values involved, leading the reader to meditate on how not only diseases imply risks for humankind, but also new health’s devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although in this work our field of reflection is limited to the applications of genetic engineering in humans, it must be emphasized that these techniques are also used in non-human organisms. Moreover, the main field of application of these is agriculture, specifically in the production of genetically modified organisms (GMOs) using recombinant DNA techniques (Fukuyama, 2002: 72).

  2. 2.

    More specifically, CRISPR individualizes the area of DNA to be cut, interposes between the two helixes and separates them: this is when Cas9 comes into action by cutting both layers in the exact position indicated by the RNA molecule. This DNA rupture triggers the activation of cellular repair mechanisms that scientists can use to modify the desired DNA zone by deactivating the defective gene that is achieved by aggregation or subtraction of genetic material (Baylis, 2019: 51, 52).

  3. 3.

    The use of the adjective “significant” is not casual: as highlighted by the Royal Swedish Academy of Sciences in its historical reconstruction (2020: 1), the first studies (although merely descriptive) on CRISPR in the genome of bacteria are due to a group of Japanese scientists (Ishino et al., 1987: 5429–5433).

  4. 4.

    Until the operation carried out in November 2018 by the Chinese geneticist He Jiankui, which will be discussed below, all the experiments had been performed without implanting in utero the embryos whose genetic heritage had been modified. The two most relevant studies of germ genomic editing in embryos are that of the working group led by the Chinese geneticist Zhang, whose results have been only discrete (Zhang et al., 2014: 40–46; Liang et al., 2015: 363–372) and the most recent, and with better results, carried out by the Oregon Health and Science University working group that has attempted to correct a genetic predisposition to contracting an inherited heart disease (Ma et al., 2017: 413–419).

  5. 5.

    Off-target modification means an unwanted and unpredictable mutation of the genome of the individual or the embryo to which the technique is addressed (Baylis, 2019: 22).

  6. 6.

    It is worth qualifying a circumstance that, although it may seem obvious, is often lost in the reconstructions of specialized literature. In order for a genomic modification carried out in the germline of an embryo to be effectively transmitted to future generations, it is necessary for the embryo to be implanted in utero (De Miguel Beriain et al., 2019: 109).

  7. 7.

    As the members of the German Bioethics Committee stated in their recent report on genomic editing, the current state of the art does not allow the reversibility of the germ modification directly in its recipient, but, theoretically, if in its future generations: For this, it would be “enough” to modify the embryo again in its early stages of development to “undo” the modification made in its progenitor during its embryonic development (Deutsche Ethikrat, 2019: 10).

  8. 8.

    In addition to the ability to cure monogenic diseases, referring in terms of prevention and not strictly therapeutic, it is essential to stress that germline editing also provides the possibility of modifying the human genome so that it is presented as less predisposed to contracting certain polygenic pathologies, including some form of cancer and diabetes (Ranisch, 2020: 64). As important doctrine emphasizes, this goal is unattainable for PGD techniques for several reasons: in addition to being limited to the number of embryos produced and the genetic characteristics of the parents, embryo selection does not exclude the possibility that genetic weakness in the face of some pathologies will be transmitted to future generations (Savulescu et al., 2015: 476).

  9. 9.

    It should be noted that, as highlighted more than 10 years ago by the renowned Italian immunologist Lucia Lopalco, not all HIV variants penetrate the body through the protein encoded by CCR5 (Lopalco, 2010: 547–600).

  10. 10.

    In fact, the spread of the news of the genomic edition made by He Jiankui has provoked a new shift in the scientific community that, if with the dossier of the Nuffield Council of Bioethics (2018) seemed ever closer to liberal positions, He returns with force to much more cautious positions. One example is the recent publication of a series of calls to strengthen, including legally, an international moratorium on the use of these techniques. Among the most relevant, those published in Nature in 2019 (Lander et al., 2019: 165–168; Wolinetz & Collins, 2019: 175) and the Geneva Declaration, a document prepared following an important scientific congress on the subject (Andorno et al., 2020: 351–354).

  11. 11.

    However, it is necessary to emphasize how there are illustrious examples that have clearly differentiated genetic engineering and eugenics. Among them, Jürgen Habermas who, while expressing all his concerns towards the developments of these techniques, fruit of a liberal genetics, the differences of Nazi eugenics which, however, was the product of an authoritarian model (Habermas, 2002). Along the same lines, we also find the International Bioethics Committee, which, in its 2015 report on the tension between genetics and human rights, while taking a stance against any kind of genetic intervention for non-therapeutic purposes, stresses that the objective of empowering human beings cannot be confused with Nazi eugenic projects which, however, were aimed at eliminating certain groups of individuals (International Bioethics Committee, 2015: 27).

  12. 12.

    Colombian Constitutional Court, Judgment C-066/2013 on “conditional exequibility” of Art. 3 of Law 361/1997, point 9.1.

References

  • Anders, G. (2011). La obsolescencia del hombre (Vol. I). Pre-Textos.

    Google Scholar 

  • Andorno, R., et al. (2020). Geneva Statemen on heritable human genome editing: The need for course correction. Trends in Biotechonolgy, 38(4), 351–354.

    Article  Google Scholar 

  • Ardigò, A. (2003). Società e salute. Lineamenti di sociologia sanitaria. FrancoAngeli.

    Google Scholar 

  • Balistreri, M. (2020). Genoma, evoluzione e scienza. In M. Balistreti et al. (Eds.), Biotecnologie e modificazioni genetiche. Scienza, etica, diritto. Il Mulino.

    Google Scholar 

  • Ballesteros Llompart, J. (2016). Tipos de deshumanismos: la confusión humano/no humano. In VVAA (Ed.), De simios, cyborgs y dioses. La naturalización del hombre a debate. Biblioteca Nueva.

    Google Scholar 

  • Baylis, F. (2019). Altered inheritance. Harvard University Press.

    Book  Google Scholar 

  • Beyleveld, D., & Brownsword, R. (2001). Human dignity in bioethics and biolaw. Oxford University Press.

    Google Scholar 

  • Birnbacher, D. (2018). Prospects of human germline modification by CRISPR-Cas9 – An Ethicist’s view. In M. Braun et al. (Eds.), Between moral hazard and legal uncertainty. Ethical, legal and societal challenges of human genome editing. Springer.

    Google Scholar 

  • Buchanan, A., et al. (2000). From chance to choice. Cambridge University Press.

    Book  Google Scholar 

  • Canguilhem, G. (1971). Lo normal y lo patológico. Siglo XXI.

    Google Scholar 

  • Caplan, A., & Sykora, P. (2017). The Council of Europe should not reaffirm the ban on germline genome editing in humans. EMBO Reports, 18(11), 1871–1872.

    Article  Google Scholar 

  • Castellanos Claramunt, J. (2020). El derecho humano a participar: estudio del artículo 21 de la declaración universal de derechos humanos. Universitas, 31, 33–52.

    Google Scholar 

  • Cutas, D. (2005). Looking for the meaning of dignity in the bioethics convention and the cloning protocol. Health Care Analysis, 13(4), 303–313.

    Article  Google Scholar 

  • Comité de Bioética de España. (2017). Informe del Comité de Bioética de España sobre la necesidad de adaptar la legislación española a la Convención de Derechos de las Personas con Discapacidad.

    Google Scholar 

  • De Miguel Beriain, I., & Armaza Armaza, E. J. (2018). Un análisis ético de las nuevas tecnologías de edición genética: el CRISPR-Cas9 a debate. Anales de la Catedra Francisco Suarez, 52, 179–200.

    Google Scholar 

  • De Miguel Beriain, I., et al. (2019). Human germline editing is not prohibited by the Oviedo convention: An argument. Medical Law International, 19(2–3), 226–232.

    Article  Google Scholar 

  • De Montalvo Jääskeläinen, F. (2020). Bioconstitucionalismo. Una reflexión sobre la edición genómica desde (y para) la teoría del derecho constitucional. Aranzadi.

    Google Scholar 

  • De Paor, A., & Blanck, P. (2016). Precision medicine and advancing genetic technologies. Disability and human rights perspectives. Laws, 5(36), 1–23.

    Google Scholar 

  • De Wert, G., et al. (2018). Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE. European Journal of Human Genetics, 26(4), 450–470.

    Article  Google Scholar 

  • Deutsche Ethikrat (2019). Intervening in human germline.. Opinion – Executive summary & recommendations

    Google Scholar 

  • Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1077–1088.

    Article  Google Scholar 

  • Durkheim, E. ([1895]2001). Las reglas del método sociológico. Fondo de Cultura Económica.

    Google Scholar 

  • Edwards, S. (2004). Disability, identity and the “expressivist objection”. Journal of Medical Ethics, 30, 418–420.

    Article  Google Scholar 

  • Esposito, R. (2004). Bios. Biopolitica e filosofia. Einaudi.

    Google Scholar 

  • Evitt, N., et al. (2015). Human germline: CRISPR-Cas modification: Toward a regulatory framework. The American Journal of Bioethics, 15(12), 25–29.

    Article  Google Scholar 

  • Feito Grande, L. (1999). El sueño de lo posible: bioética y terapia génica. Comillas.

    Google Scholar 

  • Ferrari, S., & Romeo, G. (2011). La terpia genica. In S. Rodotà & P. Zatti (Eds.), Trattato di Biodiritto. Giuffré.

    Google Scholar 

  • Ferrucci, F. (2004). La disabilità come relazione sociale. Rubbettino Editore.

    Google Scholar 

  • Foht, B. P. (2016). Gene editing: New technology, old moral questions. The New Atlantis, 48, 3–15.

    Google Scholar 

  • Fukuyama, F. (2002). Our Posthuman future. Consequences of the biotechnology revolution. Picador.

    Google Scholar 

  • Galton, F. ([1883]1907). Inquiries into human faculty and its development. MacMillan.

    Google Scholar 

  • Gordijn, B., & Chadwick, R. (2009). Introduction. In B. Gordijn & R. Chadwick (Eds.), Medical enhancement and Posthumanity. Springer.

    Chapter  Google Scholar 

  • Gracia, D. (2019). Bioética mínima. Triacastela.

    Google Scholar 

  • Habermas, J. (2002). El futuro de la naturaleza humana. ¿Hacia una eugenesia liberal? Paidos.

    Google Scholar 

  • Harris, J. (1992). Wonderwoman and superman: The ethics of human biotechnology. Oxford University Press.

    Google Scholar 

  • Harris, J. (2001). The scope and importance of bioethics. In J. Harris (Ed.), Bioethics. Oxford University Press.

    Google Scholar 

  • Harris, J. (2010). Enhancing evolution. The ethical case for making better people. Princeton University Press.

    Book  Google Scholar 

  • Insanguine Mingarro, F. (2018). Terapia genica. Un’indagine biogiuridica. Aracne.

    Google Scholar 

  • International Bioethics Comittee (IBC). (2015). Report of the IBC on updating its reflection on the human genome and human rights.

    Google Scholar 

  • Ishino, Y., et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433.

    Article  Google Scholar 

  • Kass, L. (1985). Toward a more natural science: Biology and human affairs. The Free Press.

    Google Scholar 

  • Kass, L. (2002). Life, liberty and the defence of dignity. Encounter Books.

    Google Scholar 

  • Khun, T. (1963). The structure of scientific revolutions. Chicago University Press.

    Google Scholar 

  • Knoepfler, P. (2015). Gmo sapiens: The life-changing science of designer babies. World Scientific.

    Book  Google Scholar 

  • Lacadena, J. R. (2001). Las intervenciones en el Genoma Humano: un enfoque genético. In C. M. Romeo Casabona (Ed.), Genética y Derecho Penal. Granada.

    Google Scholar 

  • Lacadena, J. R. (2017). Edición genómica: ciencia y ética. Revista Iberoamericana de Bioética, 3, 1–16.

    Article  Google Scholar 

  • Lander, E., et al. (2019). Adopt a moratorium on heritable genome editing. Nature, 567(7747), 165–168.

    Article  Google Scholar 

  • Lanphier, E., et al. (2015). Don’t edit the human germ line. Nature, 519(7544), 410–411.

    Article  Google Scholar 

  • Liang, P., et al. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell, 6(5), 363–372.

    Article  Google Scholar 

  • Lopalco, L. (2010). CCR5: From natural resistance to a new anti-HIV strategy. Viruses, 2, 547–600.

    Article  Google Scholar 

  • Luhmann, N. (1991). Soziologie des Risikos. Walter de Gruyter y Co..

    Google Scholar 

  • Ma, H., et al. (2017). Correction of a pathogenic gene mutation in human embryos. Nature, 548, 413–419.

    Article  Google Scholar 

  • Marfany, G. (2019). Interrogantes y retos actuales de la edición genética. Revista de Bioética y Derecho, 47, 17–31.

    Google Scholar 

  • McNutt, M. (2015). Breakthrough to genome editing. Science, 350(2627), 1445.

    Article  Google Scholar 

  • Mertes, H., & Pennings, G. (2015). Modification of the embryo’s genome: More useful in research than in the clinics. The American Journal of Bioethics, 15(12), 52–53.

    Article  Google Scholar 

  • Mojica Martínez, F., & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: From prokaryotes to mammals. Trends in Microbiology, 24, 811–820.

    Article  Google Scholar 

  • Mojica Martínez, F., et al. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 9(3), 613–621.

    Article  Google Scholar 

  • Montoliu, L. (2019). Editando genes: recorta, pega y colorea. Las maravillosas heramientas CRISPR. Next Door Publishers.

    Google Scholar 

  • Morris, J. (1992). Personal and political: A feminist perspective on researching physical disability. Disability, Handicap & Society, 7, 157–166.

    Article  Google Scholar 

  • Nicholl, D. T. S. (2008). An introduction to genetic engineering. Cambridge University Press.

    Book  Google Scholar 

  • Nuffield Council on Bioethics. (2018). Genome editing and human reproduction. Nuffield Council of Bioethics Press.

    Google Scholar 

  • Pannarale, L. (1998). Dipendere dal rischio. Politica del diritto, 4, 663–678.

    Google Scholar 

  • Parsons, T. (1983). Il ruolo dell’identità nella teoria generale dell’azione. In L. Sciolla (Ed.), Identità. Percorsi di analisi in sociologia. Rosenberg & Sellier.

    Google Scholar 

  • Parsons, T. (1991). The social system. Routledge.

    Google Scholar 

  • Pollack, R. (2015). Eugenics lurk in the shadow of CRISPR. Science, 348(6237), 871.

    Article  Google Scholar 

  • Porteus, M. H., & Dann, C. T. (2015). Genome editing of the germline: Broadening the discussion. Molecular Therapy, 23(5), 980–982.

    Article  Google Scholar 

  • Powell, R. (2015). In genes we trust: Germline engineering, eugenics, and the future of the human genome. Journal of Medicine and Philosophy, 40(6), 669–695.

    Article  Google Scholar 

  • Ranisch, R. (2020). Germline genome editing versus preimplantation genetic diagnosis: Is there a case in favour of germline interventions? Bioethics, 34, 60–69.

    Article  Google Scholar 

  • Raposo, V. L. (2019). Gene editing, the Mystic threat to human dignity. Journal of Bioethical Inquiry, 16(2), 249–257.

    Article  Google Scholar 

  • Resta, E. (2009). Biodiritto. In Tullio Gregory (Scientific Director), XXI secolo, norme e idee. Enciclopedia Italiana Treccani.

    Google Scholar 

  • Resta, E. (2013). Diritto vivente. Laterza.

    Google Scholar 

  • Resta, G. (2014). Dignità, persone e mercati. Giappichelli.

    Google Scholar 

  • Ricoeur, P. (1998). Il Giusto. Società Editrice Internazionale.

    Google Scholar 

  • Root, S. (2000). Other slippery slope become apparent. BMJ, 320(7238), 873.

    Google Scholar 

  • Santalò, J. y Casado, M. (2016). Documento sobre bioética y edición genética en humanos. Edicions de la Universitat de Barcelona.

    Google Scholar 

  • Savulescu, J., et al. (2015). The moral imperative to continue gene editing research on human embryos. Protein Cell, 6(7), 476–479.

    Article  Google Scholar 

  • Schallmayer, W. (1903). Vererbung und Auslese im Lebenslauf der Völker. Eine Staatswissenschaftliche Studie auf Grund der Neueren Biologie. Gustav Fischer.

    Google Scholar 

  • Segers, S., & Mertes, H. (2020). Does human genome editing reinforce or violate human dignity? Bioethics, 34(1), 33–40.

    Article  Google Scholar 

  • Silver, L. (1998). Remaking Eden: Cloning and beyond in a brave New World. Avon.

    Google Scholar 

  • Stock, G., & Campbell, J. (2000). Introduction. An evolutionary perspective. In G. Stock & J. Campbell (Eds.), Engineering the human germline. Oxford University Press.

    Google Scholar 

  • The International League of Societies for person with mental handicap. (1994). Just technology? From principle to practice in bioethical issues. Roeher Institute.

    Google Scholar 

  • The National Academies of Sciences. (2017). Human genome editing: Science, ethics, and governance. The National Academies Press.

    Google Scholar 

  • The Royal Swedish Academy of Sciences. (2020). A tool for genome editing Scientific Background on the Nobel Prize in Chemistry.

    Google Scholar 

  • Tosini, D. (2006). Equilibri bioetici. Contributo dalla teoria dei sistemi sociali Equilibri, 2.

    Google Scholar 

  • Valdés, E. (2018). Hijos a la carta. Bioderecho, beneficiencia procreativa y autonomía parental reproductiva en sociedades laicas y pluralistas. In P. Capdevielle & M. Medina-Arellano (Eds.), Bioética laica. Vida, muerte, género, reproducción y familia. UNAM Press.

    Google Scholar 

  • Volokh, E. (2003). The mechanisms of the slippery slope. Harvard Law Review, 116(4), 1028–1136.

    Article  Google Scholar 

  • Ware, L. (2004). Ideology and the politics of (in)exclusion. Peter Lang.

    Google Scholar 

  • Wells, D., et al. (2019). Current controversies in prenatal diagnosis 3: Gene editing should replace embryo selection following PGD. Prenatal Diagnosis, 39, 344–350.

    Article  Google Scholar 

  • Wolinetz, C. D., & Collins, F. S. (2019). NIH supports call for moratorium on clinical uses of germline gene editing. Nature, 567(7747), 175.

    Article  Google Scholar 

  • World Health Organization. (1998). Health promotion glossary. WHO Press.

    Google Scholar 

  • Zetsche, B., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771.

    Article  Google Scholar 

  • Zhang, et al. (2014). CRISPR/Cas9 for genome editing: Progress, implications and challenges. Human Molecular Genetics, 15(23(R1)), R40–R46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Insanguine Mingarro, F.A. (2023). Gene Therapy and Germline Cells Research. In: Valdés, E., Lecaros, J.A. (eds) Handbook of Bioethical Decisions. Volume I. Collaborative Bioethics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-29451-8_6

Download citation

Publish with us

Policies and ethics