Skip to main content

Private Evaluation of a Decision Tree Based on Secret Sharing

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2022 (ICISC 2022)

Abstract

There has been increasing interest in developing privacy-preserving algorithms for evaluating machine learning (ML) models. With the advancement of cloud computing, it is now possible for model owners to host their trained ML models on a cloud server and offer cloud computing solutions on different ML tasks to users (clients). Thus private evaluation of ML models is an attractive area of research as it allows solution providers to protect their propriety ML models and users to protect their sensitive data while using cloud computing solutions. In this work, we propose an algorithm to privately evaluate a decision tree. We examine current state-of-the-art private evaluation protocols and present a solution that is sublinear in tree size and linear in tree depth. The key feature of our proposal is that it is entirely based on secret sharing and thus there are no computational costs associated with heavy cryptographic primitives such as modular exponentiation. We propose a new method to privately index arrays that avoids the use of public/symmetric key cryptosystem, typically associated with private array indexing protocols. The results of our experiments show that our solution has a low communication cost compared to existing methods (lower by a factor of \(\approx \)10 in the online phase), and demonstrate a faster runtime at low network latency (such as LAN network). We conclude by suggesting improvement to our protocol and proposing potential areas of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amazon: Amazon web services. https://aws.amazon.com/

  2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  3. Beaver, D.: Commodity-based cryptography. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 446–455 (1997)

    Google Scholar 

  4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 503–513 (1990)

    Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

    Google Scholar 

  6. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 67–79. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_53

    Chapter  Google Scholar 

  7. Bogdanov, D., Jagomägis, R., Laur, S.: A universal toolkit for cryptographically secure privacy-preserving data mining. In: Chau, M., Wang, G.A., Yue, W.T., Chen, H. (eds.) PAISI 2012. LNCS, vol. 7299, pp. 112–126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30428-6_9

    Chapter  Google Scholar 

  8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. Cryptology ePrint Archive (2014)

    Google Scholar 

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

    Google Scholar 

  10. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_13

    Chapter  MATH  Google Scholar 

  11. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_6

    Chapter  Google Scholar 

  12. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  13. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  14. Damgård, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_30

    Chapter  MATH  Google Scholar 

  15. Damgård, I., Geisler, M., Krøigaard, M.: A correction to “efficient and secure comparison for on-line auctions. Cryptology EPrint Archive (2008)

    Google Scholar 

  16. Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Cryptography 1(1), 22–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Damgård, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_24

    Chapter  Google Scholar 

  18. De Cock, M., Dowsley, R., Horst, C., Katti, R., Nascimento, A.C., Poon, W.S., Truex, S.: Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation. IEEE Trans. Dependable Secure Comput. 16(2), 217–230 (2017)

    Article  Google Scholar 

  19. learn developers, S.: Scikit-learn: Machine learning in Python. https://scikit-learn.org/stable/index.html

  20. van Dijk, M.: A linear construction of secret sharing schemes. Des. Codes Cryptography 12(2), 161–201 (1997)

    Google Scholar 

  21. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  22. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_22

    Chapter  Google Scholar 

  23. Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cambridge University Press (2009)

    Google Scholar 

  24. Google: Google cloud. https://cloud.google.com/

  25. Heikamp, K., Bajorath, J.: Support vector machines for drug discovery. Expert Opin. Drug Discov. 9(1), 93–104 (2014)

    Article  Google Scholar 

  26. Hoang, T., Ozkaptan, C.D., Yavuz, A.A., Guajardo, J., Nguyen, T.: S3oram: a computation-efficient and constant client bandwidth blowup oram with shamir secret sharing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 491–505 (2017)

    Google Scholar 

  27. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. Electron. Commun. Japan (Part III: Fundamental Electron. Sci.) 72(9), 56–64 (1989)

    Google Scholar 

  28. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. Cryptology ePrint Archive (2011)

    Google Scholar 

  29. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: Sok: modular and efficient private decision tree evaluation. Proc. Privacy Enhancing Technol. 2019(2), 187–208 (2019)

    Article  Google Scholar 

  30. Knuth, D.E.: The art of computer programming. volume 1: Fundamental algorithms. volume 2: Seminumerical algorithms. Bull. Amer. Math. Soc. (1997)

    Google Scholar 

  31. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

    Chapter  MATH  Google Scholar 

  32. Ma, J.P., Tai, R.K., Zhao, Y., Chow, S.S.: Let’s stride blindfolded in a forest: sublinear multi-client decision trees evaluation. In: NDSS (2021)

    Google Scholar 

  33. Maheswari, S., Pitchai, R.: Heart disease prediction system using decision tree and naive bayes algorithm. Current Med. Imaging 15(8), 712–717 (2019)

    Article  Google Scholar 

  34. Micali, S., Goldreich, O., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth ACM Symposium on Theory of Computing, STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  35. Microsoft: Microsoft azure. https://azure.microsoft.com/

  36. Mohassel, P., Orobets, O., Riva, B.: Efficient server-aided 2pc for mobile phones. Proc. Priv. Enhancing Technol. 2016(2), 82–99 (2016)

    Article  Google Scholar 

  37. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23

    Chapter  Google Scholar 

  38. Reistad, T.I., Toft, T.: Secret sharing comparison by transformation and rotation. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 169–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10230-1_14

    Chapter  Google Scholar 

  39. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sudo, H., Nuida, K., Shimizu, K.: An efficient private evaluation of a decision graph. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 143–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_10

    Chapter  Google Scholar 

  41. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-Preserving Decision Trees Evaluation via Linear Functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_27

    Chapter  Google Scholar 

  42. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees using sublinear cost. Proc. Priv. Enhancing Technol. 2019(1), 266–286 (2019)

    Article  Google Scholar 

  43. Veugen, T., Blom, F., de Hoogh, S.J., Erkin, Z.: Secure comparison protocols in the semi-honest model. IEEE J. Sel. Top. Sig. Process. 9(7), 1217–1228 (2015)

    Article  Google Scholar 

  44. Watanabe, T., Iwamura, K., Kaneda, K.: Secrecy multiplication based on a (k, n)-threshold secret-sharing scheme using only k servers. In: Computer Science and its Applications, pp. 107–112. Springer, Cham (2015)

    Google Scholar 

  45. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees and random forests. Cryptology ePrint Archive (2015)

    Google Scholar 

  46. Xuan, P., Sun, C., Zhang, T., Ye, Y., Shen, T., Dong, Y.: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs. Front. Genet. 10, 459 (2019)

    Article  Google Scholar 

  47. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  48. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

  49. Zahur, S., Rosulek, M., Evans, D.: Two Halves Make a Whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

    Chapter  MATH  Google Scholar 

  50. Zheng, Y., Duan, H., Wang, C.: Towards secure and efficient outsourcing of machine learning classification. In: European Symposium on Research in Computer Security, pp. 22–40. Springer (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by MEXT/JSPS KAKENHI Grant Number 19K12209 and 21H05052. The authors would like to thank Prof. Kunihiko Sadakane for his valuable comments during the design of the protocol.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Nabil Ahmed or Kana Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, M.N., Shimizu, K. (2023). Private Evaluation of a Decision Tree Based on Secret Sharing. In: Seo, SH., Seo, H. (eds) Information Security and Cryptology – ICISC 2022. ICISC 2022. Lecture Notes in Computer Science, vol 13849. Springer, Cham. https://doi.org/10.1007/978-3-031-29371-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29371-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29370-2

  • Online ISBN: 978-3-031-29371-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics