Skip to main content

Design Rules for Self-Assembling Peptide Nanostructures

  • Chapter
  • First Online:
Peptide Bionanomaterials

Abstract

Self-assembling peptides represent a versatile chemical toolbox for the development of discrete nanostructures that can be tailored for a variety of biomedical applications. Rational design of a peptide building block involves wise selection from the amino acids pool to create a primary sequence capable of adopting a bioinspired secondary structure stabilized by a combination of non-covalent and/or covalent interactions in response to external stimuli. Herein, we focus on the basic molecular design rules for self-assembling peptides as the building units for supramolecular nanomaterials formation through a bioinspired bottom-up design strategy. We look at the physicochemical nature of different amino acids and their proposed sequence arrangements needed to guide the molecular assembly into higher-order structures governed by certain types of intra- and/or intermolecular interactions and to give insights into how the materials’ structural and functional properties can be fine-tuned to satisfy different application needs. We will discuss the structural features of biosynthesized protein nanomaterials (such as collagen, elastin-like, silk-elastin-like, keratin, and resilin) and how they inspired the development of mimetic self-assembling polypeptide analogues of shorter length, while keeping the inherent material properties of the parent designs. In addition, design rules of de novo short peptides which assemble into higher bioinspired structures (β-sheets, β-hairpins, α-helices and amphiphiles assembly), as well as unconventional peptide designs (short aromatic and cyclic peptides), are also explained. This is an introductory chapter that gives a comprehensive overview of the basic design rules for the main classes of self-assembling peptides, which are discussed in more details in the relevant chapter for each class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson JG, Zhou NE, Hodges RS (1993) Structure, function and application of the coiled-coil protein folding motif. Curr Opin Biotechnol 4(4):428–437

    Article  CAS  PubMed  Google Scholar 

  • Aggeli A, Bell M, Boden N, Keen JN, McLeish TCB, Nyrkova I, Radford SE, Semenov A (1997) Engineering of peptide β-sheet nanotapes. J Mater Chem 7:1135–1145

    Article  CAS  Google Scholar 

  • Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21):11857–11862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aigner T, Stöve J (2003) Collagens—major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593

    Article  CAS  PubMed  Google Scholar 

  • Aluigi A, Varesano A, Montarsolo A, Vineis C, Ferrero F, Mazzuchetti G, Tonin C (2007) Electrospinning of keratin/poly(ethylene oxide) blend nanofibers. J Appl Polym Sci 104:863–870

    Article  CAS  Google Scholar 

  • Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475

    Article  CAS  Google Scholar 

  • Andersen SO (1964) The cross-links in resilin identified as dityrosine and trityrosine. Biochim Biophys Acta 93:213–215

    Article  CAS  PubMed  Google Scholar 

  • Antonietti M, Forster S (2003) Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater Deerfeld 15(16):1323–1333

    Article  CAS  Google Scholar 

  • Ardell DH, Andersen SO (2001) Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol 31(10):965–970

    Article  CAS  PubMed  Google Scholar 

  • Balu R, Dutta NK, Dutta AK, Choudhury NR (2021) Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nat Commun 12(1):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8(7):596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basak S, Singh I, Ferranco A, Syed J, Kraatz HB (2017) On the role of chirality in guiding the self-assembly of peptides. Angew Chem Int Ed Engl 56(43):13288–13292

    Article  CAS  PubMed  Google Scholar 

  • Behanna HA, Donners JJ, Gordon AC, Stupp SI (2005) Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 127(4):1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Bera S, Xue B, Rehak P, Jacoby G, Ji W, Shimon LJW, Beck R, Král P, Cao Y, Gazit E (2020) Self-assembly of aromatic amino acid enantiomers into supramolecular materials of high rigidity. ACS Nano 14(2):1694–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry, 7th edn. W. H. Freeman, New York, pp 42–43

    Google Scholar 

  • Berg RA, Prockop DJ (1973) The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun 52(1):115–120

    Article  CAS  PubMed  Google Scholar 

  • Bessa PC, Machado R, Nürnberger S, Dopler D, Banerjee A, Cunha AM, Rodríguez-Cabello JC, Redl H, van Griensven M, Reis RL, Casal M (2010) Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J Control Release 142(3):312–318

    Article  CAS  PubMed  Google Scholar 

  • Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair. Biomacromolecules 3(5):910–916

    Article  CAS  PubMed  Google Scholar 

  • Betush RJ, Urban JM, Nilsson BL (2018) Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides. Biopolymers

    Google Scholar 

  • Bochicchio B, Pepe A, Tamburro AM (2008) Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality 20(9):985–994

    Article  CAS  PubMed  Google Scholar 

  • Boothroyd S, Millerb AF, Saiani A (2013) From fibres to networks using self-assembling peptides. Faraday Discuss 166:195–207

    Article  CAS  PubMed  Google Scholar 

  • Boudko SP, Engel J (2004) Structure formation in the C terminus of type III collagen guides disulfide cross-linking. J Mol Biol 335(5):1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Bowerman CJ, Nilsson BL (2012) Review self-assembly of amphipathic β-sheet peptides: insights and applications. Pept Sci 98:69–184

    Article  Google Scholar 

  • Bowerman CJ, Ryan DM, Nissan DA, Nilsson BL (2009) The effect of increasing hydrophobicity on the self-assembly of amphipathic beta-sheet peptides. Mol BioSyst 5(9):1058–1069

    Article  CAS  PubMed  Google Scholar 

  • Branco MC, Nettesheim F, Pochan DJ, Schneider JP, Wagner NJ (2009) Fast dynamics of semiflexible chain networks of self-assembled peptides. Biomacromolecules 10(6):1374–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953

    Article  CAS  Google Scholar 

  • Cameron LM, Fyles TM, Hu C (2002) Synthesis and membrane activity of a bis(metacyclophane)bolaamphiphile. J Org Chem 67(5):1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Capes JS, Kiley PJ, Windle AH (2010) Investigating the effect of pH on the aggregation of two surfactant-like octapeptides. Langmuir 26(8):5637–5644

    Article  CAS  PubMed  Google Scholar 

  • Caplan MR, Moore PN, Zhang S, Kamm RD, Lauffenburger DA (2000) Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction. Biomacromolecules 1(4):627–631

    Article  CAS  PubMed  Google Scholar 

  • Caplan MR, Schwartzfarb EM, Zhang S, Kamm RD, Lauffenburger DA (2002) Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 23(1):219–227

    Article  CAS  PubMed  Google Scholar 

  • Cejas MA, Kinney WA, Chen C, Leo GC, Tounge BA, Vinter JG, Joshi PP, Maryanoff BE (2007) Collagen-related peptides: self-assembly of short, single strands into a functional biomaterial of micrometer scale. J Am Chem Soc 129(8):2202–2203

    Article  CAS  PubMed  Google Scholar 

  • Cejas MA, Kinney WA, Chen C, Vinter JG, Almond HR Jr, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE (2008) Thrombogenic collagen-mimetic peptides: self-assembly of triple helixc-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci U S A 105(25):8513–8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S (2012) Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 41(18):6023–6041

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Hsu W, Kao TC, Horng JC (2011a) Self-assembly of short collagen-related peptides into fibrils via cation-π interactions. Biochemistry 50(13):2381–2383

    Article  CAS  PubMed  Google Scholar 

  • Chen J-X, Wang H-Y, Li C, Han K, Zhang X-Z, Zhuo R-X (2011b) Construction of surfactant-like tetra-tail amphiphilic peptide with RGD ligand for encapsulation of porphyrin for photodynamic therapy. Biomaterials 32(6):1678–1684

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671

    Article  CAS  Google Scholar 

  • Chen S, Berthelier V, Hamilton JB, O'Nuallain B, Wetzel R (2002) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41(23):7391–7399

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Qiu F, Lu Y, Shi Y-K, Zhao X (2009) Geometrical shape of hydrophobic section determines the self-assembling structures of peptide detergents and bolaamphiphilic peptides. Curr Nanosci 5(1):69–74

    Article  CAS  Google Scholar 

  • Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed Engl 47(22):4062–4069

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Chronopoulou L, Lorenzoni S, Masci G, Dentini M, Togna AR, Togna G, Bordi F, Palocci C (2010) Lipase-supported synthesis of peptidic hydrogels. Soft Matter 6(11):2525–2532

    Article  CAS  Google Scholar 

  • Claussen RC, Rabatic BM, Stupp SI (2003) Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofbers with hydrophilic cores and surfaces. J Am Chem Soc 125(42):12680–12681

    Article  CAS  PubMed  Google Scholar 

  • Clover TM, O'Neill CL, Appavu R, Lokhande G, Gaharwar AK, Posey AE, White MA, Rudra JS (2020) Self-assembly of block heterochiral peptides into helical tapes. J Am Chem Soc 142(47):19809–19813

    Article  PubMed  PubMed Central  Google Scholar 

  • Coles GC (1966) Studies on resilin biosynthesis. J Insect Physiol 12(6):679–691

    Article  CAS  PubMed  Google Scholar 

  • Collier JH, Segura T (2011) Evolving the use of peptides as components of biomaterials. Biomaterials 32(18):4198–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulombe PA, Bousquet O, Ma L, Yamada S, Wirtz D (2000) The ‘ins’ and ‘outs’ of intermediate filament organization. Trends Cell Biol 10(10):420–428

    Article  CAS  PubMed  Google Scholar 

  • Cram DJ (1988) The design of molecular hosts, guests, and their complexes. Science 240(4853):760–767

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697

    Article  CAS  Google Scholar 

  • Cui H, Cheetham AG, Pashuck ET, Stupp SI (2014) Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J Am Chem Soc 136(35):12461–12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai B, Kang SG, Huynh T, Lei H, Castelli M, Hu J, Zhang Y, Zhou R (2013) Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface. Proc Natl Acad Sci U S A 110(21):8543–8548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson WM, Martin FJO, Rhys GG, Shelley KL, Brady RL, Woolfson DN (2021) Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem Sci 12(20):6923–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santis P, Forni E, Rizzo R (1974) Conformational analysis of DNA-basic polypeptide complexes: possible models of nucleoprotamines and nucleohistones. Biopolymers 13(2):313–326

    Article  PubMed  Google Scholar 

  • Deming T (2012) Peptide-based materials. Springer Science &. Business Media, Berlin, p 310

    Book  Google Scholar 

  • Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of alpha-helical coiled coil nanofibers. J Am Chem Soc 130(41):13691–13695

    Article  CAS  PubMed  Google Scholar 

  • Doran TM, Kamens AJ, Byrnes NK, Nilsson BL (2012) Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP (20-29) amyloid self-assembly. Proteins 80(4):1053–1065

    Article  CAS  PubMed  Google Scholar 

  • Elsawy MA, Smith AM, Hodson N, Squires A, Miller AF, Saiani A (2016) Modification of β-sheet forming peptide hydrophobic face: effect on self-assembly and gelation. Langmuir 32(19):4917–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437(7061):999–1002

    Article  CAS  PubMed  Google Scholar 

  • Engel J (2005) In: Brinckmann J, Notbohm H, Muller PK (eds) Collagen: primer in structure, processing and assembly, vol 247. Springer-Verlag, Berlin, p 7

    Chapter  Google Scholar 

  • Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 110-111:169–187

    Article  CAS  PubMed  Google Scholar 

  • Fallas JA, Dong J, Tao YJ, Hartgerink JD (2012) Structural insights into charge pair interactions in triple helical collagen-like proteins. J Biol Chem 287(11):8039–8047

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature 412(6845):452–455

    Article  CAS  PubMed  Google Scholar 

  • Ferroni C, Varchi G (2021) Keratin-based nanoparticles as drug delivery carriers. Appl Sci 11(20):9417

    Article  Google Scholar 

  • Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Freeman, New York

    Google Scholar 

  • Feynman RP (1959) There’s plenty of room at the bottom. Caltech Eng Sci 23(5):22–36

    Google Scholar 

  • Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM (1999) Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 38(21):6791–6800

    Article  CAS  PubMed  Google Scholar 

  • Franceschi S, Viguerie N, Riviere M, Lattes A (1999) Synthesis and aggregation of two-headed surfactants bearing amino acid moieties. New J Chem 23(4):447–452

    Article  CAS  Google Scholar 

  • Fraser RD, MacRae TP, Parry DA, Suzuki E (1986) Intermediate filaments in alpha-keratins. Proc Natl Acad Sci U S A 83(5):1179–1183. Erratum in: Proc Natl Acad Sci U S A 1986;83(17):6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Ide Y (2004) Preparation of translucent and flexible human hair protein films and their properties. Biol Pharm Bull 27(9):1433–1436

    Article  CAS  PubMed  Google Scholar 

  • Galloway JM, Bray HEV, Shoemark DK, Hodgson LR, Coombs J, Mantell JM, Rose RS, Ross JF, Morris C, Harniman RL, Wood CW, Arthur C, Verkade P, Woolfson DN (2021) De novo designed peptide and protein hairpins self-assemble into sheets and nanoparticles. Small 17(10):e2100472

    Article  PubMed  Google Scholar 

  • Gamo T, Inokuchi T, Laufer H (1977) Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem 7(3):285–295

    Article  CAS  Google Scholar 

  • Gao J, Tang C, Elsawy MA, Smith AM, Miller AF, Saiani A (2017) Controlling self-assembling peptide hydrogel properties through network topology. Biomacromolecules 18(3):826–834

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Zhan C, Liu M (2006) Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir 22(2):775–779

    Article  CAS  PubMed  Google Scholar 

  • Gauba V, Hartgerink JD (2007) Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J Am Chem Soc 129(9):2683–2690. Erratum in: J Am Chem Soc. 2007 Jul 18;129(28):8921

    Article  CAS  PubMed  Google Scholar 

  • Gaucheron J, Santaella C, Vierling P (2001) In vitro gene transfer with a novel galactosylated spermine bolaamphiphile. Bioconjug Chem 12(4):569–575

    Article  CAS  PubMed  Google Scholar 

  • Gelain F, Luo Z, Rioult M, Zhang S (2021) Self-assembling peptide scaffolds in the clinic. NPJ Regen Med 6(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  PubMed  Google Scholar 

  • Ghadiri MR, Granja JR, Buehler LK (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369(6478):301–304

    Article  CAS  PubMed  Google Scholar 

  • Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366(6453):324–327

    Article  CAS  PubMed  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27(4):570–575

    Article  CAS  PubMed  Google Scholar 

  • Gosline JM (1980) The elastic properties of rubber-like proteins and highly extensible tissues. Symp Soc Exp Biol 34:332–357

    CAS  PubMed  Google Scholar 

  • Guerra A, Brea RJ, Amorin M, Castedo L, Granja JR (2012) Self-assembling properties of all gamma-cyclic peptides containing sugar amino acid residues. Org Biomol Chem 10(44):8762–8766

    Article  CAS  PubMed  Google Scholar 

  • Guilbaud JB, Rochas C, Miller AF, Saiani A (2013) Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels. Biomacromolecules 14(5):1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Guilbaud JB, Vey E, Boothroyd S, Smith AM, Ulijn RV, Saiani A, Miller AF (2010) Enzymatic catalyzed synthesis and triggered gelation of ionic peptides. Langmuir 26(13):11297–11303

    Article  CAS  PubMed  Google Scholar 

  • Guler MO, Hsu L, Soukasene S, Harrington DA, Hulvat JF, Stupp SI (2006) Presentation of RGDS epitopes on self-assembled nanofbers of branched peptide amphiphiles. Biomacromolecules 7(6):1855–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guler MO, Soukasene S, Hulvat JF, Stupp SI (2005) Presentation and recognition of biotin on nanofbers formed by branched peptide amphiphiles. Nano Lett 5(2):249–252

    Article  CAS  PubMed  Google Scholar 

  • Haider M, Megeed Z, Ghandehari H (2004) Genetically engineered polymers: status and prospects for controlled release. J Control Release 95(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127(48):17025–17029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haines-Butterick L, Rajagopal K, Branco M, Salick D, Rughani R, Pilarz M, Lamm MS, Pochan DJ, Schneider JP (2007) Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci U S A 104(19):7791–7796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamley IW (2011) Self-assembly of amphiphilic peptides. Soft Matter 7(9):4122–4138

    Article  CAS  Google Scholar 

  • Hamley IW (2012) The amyloid beta peptide: a chemist's perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192

    Article  CAS  PubMed  Google Scholar 

  • Han TH, Oh JK, Lee G-J, Pyun S-I, Kim SO (2010) Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures. Colloids Surf B: Biointerfaces 79(2):440–445

    Article  CAS  PubMed  Google Scholar 

  • Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC, Stupp SI (2006) Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A 78(1):157–167

    Article  PubMed  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    Article  CAS  PubMed  Google Scholar 

  • Hartgerink JD, Granja JR, Milligan RA, Ghadiri MR (1996) Self-assembling peptide nanotubes. J Am Chem Soc 118(1):43–50

    Article  CAS  Google Scholar 

  • Hauser CA, Zhang S (2010a) Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev 39(8):2780–2790

    Article  CAS  PubMed  Google Scholar 

  • Hauser CAE, Zhang S (2010b) Designer self-assembling peptide materials for diverse applications. Macromol Symp 295(1):30–48

    Article  CAS  Google Scholar 

  • He M, Wang L, Wu J, Xiao J (2016) Ln3+ −mediated self-assembly of a collagen peptide into luminescent banded helical nanoropes. Chemistry 22(6):1914–1917

    Article  CAS  PubMed  Google Scholar 

  • Hinterding K, Alonso-Díaz D, Waldmann H (1998) Organic synthesis and biological signal transduction. Angew Chem Int Ed Engl 37(6):688–749

    Article  CAS  PubMed  Google Scholar 

  • Hodges RS (1996) De novo design of alpha-helical proteins: basic research to medical applications. Biochem Cell Biol 74(2):133–154

    Article  CAS  PubMed  Google Scholar 

  • Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. J Am Chem Soc 127(35):12423–12428

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Pritzker MD, Legge RL, Chen P (2005) Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II. Colloids Surf B Biointerfaces 46(3):152–161

    Article  CAS  PubMed  Google Scholar 

  • Hosseinkhani H, Hong PD, Yu DS (2013) Self-assembled proteins and peptides for regenerative medicine. Chem Rev 113(7):4837–4861

    Article  CAS  PubMed  Google Scholar 

  • Hsu W, Chen YL, Horng JC (2012) Promoting self-assembly of collagen-related peptides into various higher-order structures by metal-histidine coordination. Langmuir 28(6):3194–3199

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wang H, Wang J, Wang S, Liao W, Yang Y, Zhang Y, Kong D, Yang Z (2010) Supramolecular hydrogels inspired by collagen for tissue engineering. Org Biomol Chem 8(14):3267–3271

    Article  CAS  PubMed  Google Scholar 

  • Huang RL, Qi W, Su RX, Zhao J, He ZM (2011) Solvent and surface controlled self-assembly of diphenylalanine peptide: from microtubes to nanofbers. Soft Matter 7(14):6418–6421

    Article  CAS  Google Scholar 

  • Huang W, Tarakanova A, Dinjaski N, Wang Q, Xia X, Chen Y, Wong JY, Buehler MJ, Kaplan DL (2016) Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk-elastin-like proteins. Adv Funct Mater 26(23):4113–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hule RA, Nagarkar RP, Hammouda B, Schneider JP, Pochan DJ (2009) Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules 42(18):7137–7145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüttl C, Hettrich C, Miller R, Paulke BR, Henklein P, Rawel H, Bier FF (2013) Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity. BMC Biotechnol 18(13):51

    Article  Google Scholar 

  • Hwang JJ, Iyer SN, Li L-S, Claussen R, Harrington DA, Stupp SI (2002) Self-assembling biomaterials: liquid crystal phases of cholesteryl oligo(l-lactic acid) and their interactions with cells. Proc Natl Acad Sci U S A 99(15):9662–9667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara Y, Kimura S (2010) Nanofiber formation of amphiphilic cyclic tri-beta-peptide. J Peptide Sci 16(2):110–114

    Article  CAS  Google Scholar 

  • Jain R, Roy S (2019) Designing a bioactive scaffold from coassembled collagen–laminin short peptide hydrogels for controlling cell behaviour. RSC Adv 9:38745–38759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang S, Yuan JM, Shin J, Measey TJ, Schweitzer-Stenner R, Li FY (2009) Energy landscapes associated with the self-aggregation of an alanine-based oligopeptide (AAKA)4. J Phys Chem B 113(17):6054–6061

    Article  CAS  PubMed  Google Scholar 

  • Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18:611–614

    Article  CAS  Google Scholar 

  • Jia X, Kiick KL (2009) Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci 9(2):140–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Xu C, Liu Y, Liu Z, Wall JS, Zuo X, Lian T, Salaita K, Ni C, Pochan D, Conticello VP (2014) Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136(11):4300–4308

    Article  CAS  PubMed  Google Scholar 

  • Katchalski E, Sela M (1958) Synthesis and chemical properties of poly-alpha-amino acids. Adv Protein Chem 13:243–492

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) Preparation and properties of keratin-poly(vinyl alcohol) blend fiber. J Appl Polym Sci 91:756–762

    Article  CAS  Google Scholar 

  • Khoe U, Yang Y, Zhang S (2009) Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir 25(7):4111–4114

    Article  CAS  PubMed  Google Scholar 

  • King PJ, Giovanna Lizio M, Booth A, Collins RF, Gough JE, Miller AF, Webb SJ (2016) A modular self-assembly approach to functionalised β-sheet peptide hydrogel biomaterials. Soft Matter 12(6):1915–1923

    Article  CAS  PubMed  Google Scholar 

  • Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99(15):9996–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogiso M, Hanada T, Yase K, Shimizu T (1998) Intralayer hydrogen-bond-directed self-assembly of nano-fibers from dicarboxylic valylvaline bolaamphiphiles. Chem Commun 17:1791–1792

    Article  Google Scholar 

  • Kohn WD, Hodges RS (1998) De novo design of alpha-helical coiled coils and bundles: models for the development of protein-design principles. Trends Biotechnol 16:379–389

    Article  CAS  Google Scholar 

  • Kohn WD, Mant CT, Hodges RS (1997) Alpha-helical protein assembly motifs. J Biol Chem 272(5):2583–2586

    Article  CAS  PubMed  Google Scholar 

  • Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5(7):1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Pillay V, Modi G, Choonara YE, du Toit LC, Naidoo D (2011) Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Recent Pat Drug Deliv Formul 5(1):24–51

    Article  CAS  PubMed  Google Scholar 

  • Kumar VA, Taylor NL, Jalan AA, Hwang LK, Wang BK, Hartgerink JD (2014) A nanostructured synthetic collagen mimic for hemostasis. Biomacromolecules 15(4):1484–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 27(7):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Ju M, Cho OH, Kim Y, Nam KT (2018) Tyrosine-Rich peptides as a platform for assembly and material synthesis. Adv Sci (Weinh) 6(4):1801255

    Article  PubMed  Google Scholar 

  • Lee TAT, Cooper A, Apkarian RP, Conticello VP (2000) Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides. Adv Mater 12:1105

    Article  CAS  Google Scholar 

  • Lehn JM (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci U S A 99(8):4763–4768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Deming TJ (2010) Tunable hydrogel morphology via self-assembly of amphiphilic pentablock copolypeptides. Soft Matter 6(11):2546–2551

    Article  CAS  Google Scholar 

  • Lim YB, Lee E, Lee M (2007) Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angew Chem Int Ed Engl 46(47):9011–9014

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Busuttil K, Zhang S, Yang Y, Wang C, Besenbachera F, Dong M (2011) The role of self-assembling polypeptides in building nanomaterials. Phys Chem Chem Phys 13(39):17435–17444

    Article  CAS  PubMed  Google Scholar 

  • Löwik DW, van Hest JC (2004) Peptide based amphiphiles. Chem Soc Rev 33(4):234–245

    Article  PubMed  Google Scholar 

  • Luo T, Kiick KL (2013) Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials. Eur Polym J 49(10):2998–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21(10):375–382

    Article  CAS  PubMed  Google Scholar 

  • Madhusudan Makwana K, Mahalakshmi R (2015) Implications of aromatic-aromatic interactions: from protein structures to peptide models. Protein Sci 24(12):1920–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18(11):1365–1370

    Article  CAS  Google Scholar 

  • von Maltzahn G, Vauthey S, Santoso S, Zhang S (2003) Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19(10):4332–4337

    Article  Google Scholar 

  • Mandal D, Nasrolahi Shirazi A, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12(22):3544–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal D, Tiwari RK, Shirazi AN, Oh D, Ye G, Banerjee A, Yadav A, Paranga K (2013) Self-assembled surfactant cyclic peptide nanostructures as stabilizing agents. Soft Matter 9(39)

    Google Scholar 

  • Marchesan S, Easton CD, Kushkaki F, Waddington L, Hartley PG (2012a) Tripeptide self-assembled hydrogels: unexpected twists of chirality. Chem Commun (Camb) 48(16):2195–2197

    Article  CAS  PubMed  Google Scholar 

  • Marchesan S, Waddington L, Easton CD, Winkler DA, Goodall L, Forsythe J, Hartley PG (2012b) Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale 4(21):6752–6760

    Article  CAS  PubMed  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Measey TJ, Schweitzer-Stenner R (2006) Aggregation of the amphipathic peptides (AAKA)n into antiparallel beta-sheets. J Am Chem Soc 128(41):13324–13325

    Article  CAS  PubMed  Google Scholar 

  • Measey TJ, Schweitzer-Stenner R, Sa V, Kornev K (2010) Anomalous conformational instability and hydrogel formation of a cationic class of self-assembling oligopeptides. Macromolecules 43(18):7800–7806

    Article  CAS  Google Scholar 

  • Megeed Z, Cappello J, Ghandehari H (2002) Genetically engineered silk-elastin-like protein polymers for controlled drug delivery. Adv Drug Deliv Rev 54(8):1075–1091

    Article  CAS  PubMed  Google Scholar 

  • Melchionna M, Styan KE, Marchesan S (2016) The unexpected advantages of using D-amino acids for peptide self- assembly into nanostructured hydrogels for medicine. Curr Top Med Chem 16(18):2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menger FM, Keiper JS (2000) Gemini Surfactants. Angew Chem Int Ed Engl 39(11):1906–1920

    Article  CAS  PubMed  Google Scholar 

  • Menger FM, Littau CA (1991) Gemini-surfactants: synthesis and properties. J Am Chem Soc 113(4):1451–1452

    Article  CAS  Google Scholar 

  • Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592

    Article  CAS  PubMed  Google Scholar 

  • Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129(6):705–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Montenegro J, Ghadiri MR, Granja JR (2013) Ion channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46(12):2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Tanaka K, Kikuchi Y, Waga M, Waga S, Mizuno S (1995) Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol 251(2):217–228

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Yu M (2014) Effects of hydrophobic interaction strength on the self-assembled structures of model peptides. Soft Matter 10(27):4956–4965

    Article  CAS  PubMed  Google Scholar 

  • Nagarkar RP, Hule RA, Pochan DJ, Schneider JP (2008) De novo design of strand-swapped beta-hairpin hydrogels. J Am Chem Soc 130(13):4466–4474

    Article  CAS  PubMed  Google Scholar 

  • Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H (2002) Genetic synthesis and characterization of pH- and temperature-sensitive silk-elastin-like protein block copolymers. J Biomed Mater Res 62(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H (2003) Genetic engineering of stimuli-sensitive silk-elastin-like protein block copolymers. Biomacromolecules 4(3):602–607

    Article  CAS  PubMed  Google Scholar 

  • Narayan OP, Mu X, Hasturk O, Kaplan DL (2021) Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 121:214–223

    Article  CAS  PubMed  Google Scholar 

  • Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417(6887):424–428

    Article  CAS  PubMed  Google Scholar 

  • Nowak AP, Breedveld V, Pine DJ, Deming TJ (2003) Unusual salt stability in highly charged diblock co-polypeptide hydrogels. J Am Chem Soc 125(50):15666–15670

    Article  CAS  PubMed  Google Scholar 

  • Nowak AP, Sato J, Breedveld V, Deming TJ (2006) Hydrogel formation in amphiphilic triblock copolypeptides. Supramol Chem 18:423–427

    Article  CAS  Google Scholar 

  • O’Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD (2011) Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 3(10):821–828

    Article  PubMed  Google Scholar 

  • Oas TG, Endow SA (1994) Springs and hinges: dynamic coiled coils and discontinuities. Trends Biochem Sci 19(2):51–54

    Article  CAS  PubMed  Google Scholar 

  • Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U S A 98(4):1404–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with Tunable modulus. Macromolecules 37(19):7331–7337

    Article  CAS  Google Scholar 

  • Palomo JM (2014) Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv 4:32658–32672

    Article  CAS  Google Scholar 

  • Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39(30):8728–8734

    Article  CAS  PubMed  Google Scholar 

  • Papapostolou D, Smith AM, Atkins ED, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104(26):10853–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paramonov SE, Jun HW, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128(22):7291–7298

    Article  CAS  PubMed  Google Scholar 

  • Pauling L, Corey RB (1951) Configurations of polypeptide chains with Favored orientations around single bonds: two new pleated sheets. Proc Natl Acad Sci U S A 37(11):729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauling L, Corey RB (1953) Compound helical configurations of polypeptide chains: structure of proteins of the alpha-keratin type. Nature 171(4341):59–61

    Article  CAS  PubMed  Google Scholar 

  • Perinelli DR, Campana M, Singh I, Vllasaliu D, Doutch J, Palmieri GF, Casettari L (2019) PEGylation affects the self-assembling behaviour of amphiphilic octapeptides. Int J Pharm 25(571):118752

    Article  Google Scholar 

  • Persikov AV, Ramshaw JA, Brodsky B (2005) Prediction of collagen stability from amino acid sequence. J Biol Chem 280(19):19343–19349

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 91:5355–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392

    Article  CAS  PubMed  Google Scholar 

  • Pires MM, Chmielewski J (2009) Self-assembly of collagen peptides into microflorettes via metal coordination. J Am Chem Soc 131(7):2706–2712

    Article  CAS  PubMed  Google Scholar 

  • Pires MM, Lee J, Ernenwein D, Chmielewski J (2012) Controlling the morphology of metal-promoted higher ordered assemblies of collagen peptides with varied core lengths. Langmuir 28(4):1993–1997

    Article  CAS  PubMed  Google Scholar 

  • Pochan DJ, Pakstis L, Ozbas B, Nowak AP, Deming TJ (2002) SANS and Cryo-TEM study of self-assembled diblock copolypeptide hydrogels with rich nano- through microscale morphology. Macromolecules 35:5358–5360

    Article  CAS  Google Scholar 

  • Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Earnshaw WC (2008) Cell biology, 2nd edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Przybyla DE, Rubert Pérez CM, Gleaton J, Nandwana V, Chmielewski J (2013) Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres. J Am Chem Soc 135(9):3418–3422

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Wang H, Wei K, Yang Y, Zheng R-Y, Kim IS, Zhang K-Q (2017) A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci 18(3):237

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, Podoler I, Shoseyov O, Kaplan DL (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10(12):3227–3234

    Article  CAS  PubMed  Google Scholar 

  • Qiu F, Chen Y, Tang C, Zhou Q, Wang C, Shi Y, Zhao X (2008) De novo design of a bolaamphiphilic peptide with only natural amino acids. Macromol Biosci 8(11):1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10(9):2619–2625

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176(4482):593–595

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Massodi I, Bidwell GL (2008) Thermally targeted delivery of chemotherapeutics and anti-cancer peptides by elastin-like polypeptide. Expert Opin Drug Deliv 5(3):353–369

    Article  CAS  PubMed  Google Scholar 

  • Rauscher S, Baud S, Miao M, Keeley Fred W, Pomès R (2006) Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14:1667–1676

    Article  CAS  PubMed  Google Scholar 

  • Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627

    Article  CAS  PubMed  Google Scholar 

  • Reches M, Gazit E (2004) Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 4:581–585

    Article  CAS  Google Scholar 

  • Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1(3):195–200

    Article  CAS  PubMed  Google Scholar 

  • Reddy CC, Khilji IA, Gupta A, Bhuyar P, Mahmood S, Al-Japairai KAS, Chua GK (2021) Valorization of keratin waste biomass and its potential applications. J Water Process Eng 40:101707

    Article  Google Scholar 

  • Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30(36):6854–6866

    Article  CAS  PubMed  Google Scholar 

  • Rele S, Song Y, Apkarian RP, Qu Z, Conticello VP, Chaikof EL (2007) D-periodic collagen-mimetic microfibers. J Am Chem Soc 129(47):14780–14787

    Article  CAS  PubMed  Google Scholar 

  • Roberts S, Costa S, Schaal J, Simon JR, Dzuricky M, Quiroz FG, Chilkoti A (2017) In: Healy K, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds) Comprehensive biomaterials II, vol 2. Elsevier, Amsterdam, pp 90–108

    Chapter  Google Scholar 

  • Rodgers UR, Weiss AS (2005) Cellular interactions with elastin. Pathol Biol (Paris) 53(7):390–398

    Article  CAS  PubMed  Google Scholar 

  • Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014

    Article  PubMed Central  Google Scholar 

  • Rubio J, Alfonso I, Burguete MI, Luis SV (2012) Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a gemini amphiphilic pseudopeptide: from nano-spheres to hydrogels. Chem Commun (Camb) 48(16):2210–2212

    Article  CAS  PubMed  Google Scholar 

  • Ryadnov MG, Woolfson DN (2003) Engineering the morphology of a self-assembling protein fibre. Nat Mater 2(5):329–332

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Banskota S, Roberts S, Kirmani N, Chilkoti A (2020) Engineering the architecture of elastin-like polypeptides: from unimers to hierarchical self-assembly. Adv Ther (Weinh) 3(3):1900164

    Article  PubMed  Google Scholar 

  • Sakakibara S, Inouye K, Shudo K, Kishida Y, Kobayashi Y, Prockop DJ (1973) Synthesis of (Pro-Hyp-Gly) n of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxypyroline. Biochim Biophys Acta 303(1):198–202

    Article  CAS  PubMed  Google Scholar 

  • Santoso S, Hwang W, Hartman H, Zhang S (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2(7):687–691

    Article  CAS  Google Scholar 

  • Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037

    Article  CAS  PubMed  Google Scholar 

  • Senguen FT, Doran TM, Anderson EA, Nilsson BL (2011) Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16-22 self-assembly. Mol BioSyst 7(2):497–510

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao Y, Yang Z, Xu B (2011) Exceptionally small supramolecular hydrogelators based on aromatic-aromatic interactions. Beilstein J Org Chem 7:167–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi P, Gustafson JA, MacKay JA (2014) Genetically engineered nanocarriers for drug delivery. Int J Nanomedicine 9:1617–1626

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Lin R, Cui H, Azevedo HS (2018) Multifunctional self-assembling peptide-based nanostructures for targeted intracellular delivery: design, physicochemical characterization, and biological assessment. Methods Mol Biol 1758:11–26

    Article  CAS  PubMed  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Banwell EF, Edwards WR, Pandya M, Woolfson DN (2006) Engineering increased stability into self-assembled protein fibers. Adv Funct Mater 16(8):1022–1030

    Article  CAS  Google Scholar 

  • Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv Mater 20(1):37–41

    Article  CAS  Google Scholar 

  • Song J, Cheng Q, Stevens RC (2002) Morphological manipulation of bolaamphiphilic polydiacetylene assemblies by controlled lipid doping. Chem Phys Lipids 114(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Challa SR, Medforth CJ, Qiu Y, Watt RK, Peña D, Miller JE, van Swolab F, Shelnutt JA (2004) Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem Commun (Camb) 9:1044–1045

    Article  Google Scholar 

  • Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castaño EM, Frangione B (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4(7):822–826

    Article  CAS  PubMed  Google Scholar 

  • Struthers MD, Cheng RP, Imperiali B (1996) Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science 271(5247):342–345

    Article  CAS  PubMed  Google Scholar 

  • Su RS, Kim Y, Liu JC (2014) Resilin: protein-based elastomeric biomaterials. Acta Biomater 10(4):1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Fan Z, Wang Y, Huang Y, Schmidt M, Zhang M (2015) Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter 11(19):3822–3832

    Article  CAS  PubMed  Google Scholar 

  • Sun X-L, Biswas N, Kai T, Dai Z, Dluhy RA, Chaikof EL (2006) Membrane-mimetic films of asymmetric phosphatidylcholine lipid bolaamphiphiles. Langmuir 22(3):1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Fraser RDB, MacRae TP (1980) Role of hydroxyproline in the stabilization of the collagen molecule via water molecules. Int J Biol Macromol 2:54–56

    Article  CAS  Google Scholar 

  • Swanekamp RJ, DiMaio JT, Bowerman CJ, Nilsson BL (2012) Coassembly of enantiomeric amphipathic peptides into amyloid-inspired rippled β-sheet fibrils. J Am Chem Soc 134(12):5556–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Tachibana A, Kaneko S, Tanabe T, Yamauchi K (2005) Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 26(3):297–302

    Article  CAS  PubMed  Google Scholar 

  • Tachibana A, Nishikawa Y, Nishino M, Kaneko S, Tanabe T, Yamauchi K (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102(5):425–429

    Article  CAS  PubMed  Google Scholar 

  • Tamburro AM, Panariello S, Santopietro V, Bracalello A, Bochicchio B, Pepe A (2010) Molecular and supramolecular structural studies on significant repetitive sequences of resilin. Chembiochem 11(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432(1):92–103

    Article  CAS  PubMed  Google Scholar 

  • Tanrikulu IC, Raines RT (2014) Optimal interstrand bridges for collagen-like biomaterials. J Am Chem Soc 136(39):13490–13493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128(4):1070–1071

    Article  CAS  PubMed  Google Scholar 

  • Tu RS, Tirrell M (2004) Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev 56(11):1537–1563

    Article  CAS  PubMed  Google Scholar 

  • Tugyi R, Uray K, Iván D, Fellinger E, Perkins A, Hudecz F (2005) Partial D-amino acid substitution: improved enzymatic stability and preserved ab recognition of a MUC2 epitope peptide. Proc Natl Acad Sci U S A 102(2):413–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyaver S, Hernandez HW, Habiboglu MG (2018) Self-assembly of aromatic amino acids: a molecular dynamics study. Phys Chem Chem Phys 20(48):30525–30536

    Article  CAS  PubMed  Google Scholar 

  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci U S A 99(8):5355–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vegners R, Shestakova I, Kalvinsh I, Ezzell RM, Janmey PA (1995) Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1(6):371–378

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhu D, Paul A, Cai L, Enejder A, Yang F, Heilshorn SC (2017) Covalently adaptable elastin-like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv Funct Mater 27(28):1605609

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xia X, Huang W, Lin Y, Xu Q, Kaplan DL (2014) High throughput screening of dynamic silk-elastin-like protein biomaterials. Adv Funct Mater 24(27):4303–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber MJ, Berns EJ, Stupp SI (2013) Supramolecular nanofibers of peptide amphiphiles for medicine. Isr J Chem 53(8):530–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissig V, Torchilin V (2000) Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol 1(4):325–346

    Article  CAS  PubMed  Google Scholar 

  • Wester JR, Lewis JA, Freeman R, Sai H, Palmer LC, Henrich SE, Stupp SI (2020) Supramolecular exchange among assemblies of opposite charge leads to hierarchical structures. J Am Chem Soc 142(28):12216–12225

    Article  CAS  PubMed  Google Scholar 

  • Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99(8):4769–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    Article  CAS  PubMed  Google Scholar 

  • Whitford D (2005) Proteins: structure and function. Wiley, Chichester

    Google Scholar 

  • Wong KM, Wang Y, Seroski DT, Larkin GE, Mehta AK, Hudalla GA, Hall CK, Paravastu AK (2020) Molecular complementarity and structural heterogeneity within co-assembled peptide β-sheet nanofibers. Nanoscale 12(7):4506–4518

    Article  CAS  PubMed  Google Scholar 

  • Woolfson DN (2017) Coiled-coil design: updated and upgraded. Subcell Biochem 82:35–61

    Article  CAS  PubMed  Google Scholar 

  • Wrześniewska-Tosik K, Wawro D, Ratajska M, Stęplewski W (2007) Novel composites with feather keratin. Fibres Text East Eur 15:157–162

    Google Scholar 

  • Wychowaniec JK, Patel R, Leach J, Mathomes R, Chhabria V, Patil-Sen Y, Hidalgo-Bastida A, Forbes RT, Hayes JM, Elsawy MA (2020) Aromatic stacking facilitated self-assembly of ultrashort ionic complementary peptide sequence: β-sheet nanofibers with remarkable gelation and interfacial properties. Biomacromolecules 21(7):2670–2680. Epub 2020 May 29

    Article  CAS  PubMed  Google Scholar 

  • Xiao-Zhou S, Hong-Ru W, Mian H (2014) Characterization of the casein/keratin self-assembly nanomicelles. J Nanomater 2014:183815

    Article  Google Scholar 

  • Xu C, Joss L, Wang C, Pechar M, Kopecek J (2002) The influence of fusion sequences on the thermal stabilities of coiled coil proteins. Macromol Biosci 2(8):395–401

    Article  CAS  Google Scholar 

  • Xu S, Sang L, Zhang Y, Wang X, Li X (2013) Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration. Mater Sci Eng C Mater Biol Appl 33(2):648–655

    Article  CAS  PubMed  Google Scholar 

  • Yang ZM, Gu HW, Zhang Y, Wang L, Xu B (2004) Small molecule hydrogels based on a class of antiinflammatory agents. Chem Commun 2:208–209

    Article  Google Scholar 

  • Ye Z, Zhang H, Luo H, Wang S, Zhou Q, Du X, Tang C, Chen L, Liu J, Shi YK, Zhang EY, Ellis-Behnke R, Zhao X (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14(2):152–162

    Article  CAS  PubMed  Google Scholar 

  • Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5(1):183–186

    Article  CAS  PubMed  Google Scholar 

  • Yi Z, Cui X, Chen G, Chen X, Jiang X, Li X (2021) Biocompatible, antioxidant nanoparticles prepared from natural renewable tea polyphenols and human hair keratins for cell protection and anti-inflammation. ACS Biomater Sci Eng 7(3):1046–1057

    Article  CAS  PubMed  Google Scholar 

  • Yokoi H, Kinoshita T, Zhang S (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 102(24):8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Yu DW, Checkla DM, Freedberg IM, Bertolino AP (1993) Human hair keratins. J Invest Dermatol 101(1 Suppl):56S–59S

    Article  CAS  PubMed  Google Scholar 

  • Yu YB (2002) Coiled-coils: stability, specificity, and drug delivery potential. Adv Drug Deliv Rev 54(8):1113–1129

    Article  CAS  PubMed  Google Scholar 

  • Yucel T, Micklitsch CM, Schneider JP, Pochan DJ (2008) Direct observation of early-time hydrogelation in beta-hairpin peptide self-assembly. Macromolecules 41(15):5763–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Jiang L, Teng W, Cappello J, Zohar Y, Wu X (2014) Engineering aqueous fiber assembly into silk-elastin-like protein polymers. Macromol Rapid Commun 35(14):1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Zhan C, Gao P, Liu M (2005) Self-assembled helical spherical-nanotubes from an l-glutamic acid based bolaamphiphilic low molecular mass organogelator. Chem Commun 4(4):462–464

    Article  Google Scholar 

  • Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5):663–672

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gu H, Yang Z, Xu B (2003) Supramolecular hydrogels respond to ligand-receptor interaction. J Am Chem Soc 125(45):13680–13681

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Luab JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39(9):3480–3498

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Mao K, Chen S, Zhu H (2021) Chirality effects in peptide assembly structures. Front Bioeng Biotechnol 22(9):703004

    Article  Google Scholar 

  • Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44(2):119–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Newton-Mosharafa fund awarded to A.K. and M.A.E. and Egyptian Government mission’s sector PhD scholarship to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Elsawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khedr, A., Soliman, M.A.N., Elsawy, M.A. (2023). Design Rules for Self-Assembling Peptide Nanostructures. In: Elsawy, M.A. (eds) Peptide Bionanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-031-29360-3_1

Download citation

Publish with us

Policies and ethics