Skip to main content
  • 305 Accesses

Abstract

Septal defects are the most common congenital heart defects. Although often being classified as simple congenital cardiac defects, many of these anomalies are of hemodynamic importance. Cardiovascular magnetic resonance (CMR) imaging is able to describe the anatomical details of atrial and ventricular septal defects as well as their associated anomalies. In addition, CMR provides clinically important information about the hemodynamic significance of a particular defect by enabling accurate shunt quantification and precise measurement of atrial and ventricular volumes. In this chapter, the different atrial and ventricular septal defects and the CMR techniques for their evaluation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48:455–63.

    PubMed  PubMed Central  Google Scholar 

  2. Karunanithi Z, Nyboe C, Hjortdal VE. Long-term risk of atrial fibrillation and stroke in patients with atrial septal defect diagnosed in childhood. Am J Cardiol. 2017;119:461–5.

    PubMed  Google Scholar 

  3. Nyboe C, Karunanithi Z, Nielsen-Kudsk JE, et al. Long-term mortality in patients with atrial septal defect: a nationwide cohort-study. Eur Heart J. 2018;39:993–8.

    PubMed  Google Scholar 

  4. Kidd L, Driscoll DJ, Gersony WM, et al. Second natural history study of congenital heart defects. Results of treatment of patients with ventricular septal defects. Circulation. 1993;87(2 Suppl):I38–51.

    CAS  PubMed  Google Scholar 

  5. Moller JH, Patton C, Varco RL, et al. Late results (30 to 35 years) after operative closure of isolated ventricular septal defect from 1954 to 1960. Am J Cardiol. 1991;68(15):1491–7.

    CAS  PubMed  Google Scholar 

  6. Beerbaum P, Körperich H, Gieseke J, et al. Rapid left-to-right shunt quantification in children by phase-contrast magnetic resonance imaging combined with sensitivity encoding (SENSE). Circulation. 2003;16(108):1355–61.

    Google Scholar 

  7. Kilner PJ. Imaging congenital heart disease in adults. Br J Radiol. 2011;84(Spec Issue 3):S258–68.

    Google Scholar 

  8. Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84.

    PubMed  Google Scholar 

  9. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.

    CAS  PubMed  Google Scholar 

  10. Naqvi N, McCarthy KP, Ho SY. Anatomy of the atrial septum and interatrial communications. J Thorac Dis. 2018;10(Suppl 24):S2837–47.

    PubMed  PubMed Central  Google Scholar 

  11. Wald RM, Powell AJ. Simple congenital heart lesions. J Cardiovasc Magn Reson. 2006;8:619–31.

    PubMed  Google Scholar 

  12. Menillo AM, Lee LS, Pearson-Shaver AL. Atrial septal defect. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2021.

    Google Scholar 

  13. Lopez L, Houyel L, Colan SD, et al. Classification of ventricular septal defects for the eleventh iteration of the international classification of diseases-striving for consensus: a report from the International Society for Nomenclature of Paediatric and Congenital Heart Disease. Ann Thorac Surg. 2018;106:1578–89.

    PubMed  Google Scholar 

  14. Spicer DE, Anderson RH, Backer CL. Clarifying the surgical morphology of inlet ventricular septal defects. Ann Thorac Surg. 2013;95:236–41.

    PubMed  Google Scholar 

  15. Van Praagh R, Geva T, Kreutzer J. Ventricular septal defects: how shall we describe, name and classify them? J Am Coll Cardiol. 1989;14:1298–9.

    PubMed  Google Scholar 

  16. Mostefa-Kara M, Bonnet D, Belli E, et al. Anatomy of the ventricular septal defect in outflow tract defects: similarities and differences. J Thorac Cardiovasc Surg. 2015;149:682–8.

    PubMed  Google Scholar 

  17. Hatipoglu S, Almogheer B, Mahon C, et al. Clinical significance of partial anomalous pulmonary venous connections (isolated and atrial septal defect associated) determined by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2021;14:e012371.

    PubMed  Google Scholar 

  18. Glen S, Burns J, Bloomfield P, et al. Prevalence and development of additional cardiac abnormalities in 1448 patients with congenital ventricular septal defects. Heart. 2004;90:1321–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Karonis T, Scognamiglio G, Babu-Narayan SV, et al. Clinical course and potential complications of small ventricular septal defects in adulthood: late development of left ventricular dysfunction justifies lifelong care. Int J Cardiol. 2016;208:102–6.

    PubMed  Google Scholar 

  20. Perloff JK. Surgical closure of atrial septal defect in adults. N Engl J Med. 1995;333:513–4.

    CAS  PubMed  Google Scholar 

  21. Gatzoulis MA, Freeman MA, Siu SC, et al. Atrial arrhythmia after surgical closure of atrial septal defects in adults. N Engl J Med. 1999;340:839–46.

    CAS  PubMed  Google Scholar 

  22. Campbell M, et al. Natural history of atrial septal defect. Br Heart J. 1970;32:820–6.

    CAS  PubMed Central  Google Scholar 

  23. Budts W, Miller O, Babu-Narayan SV, Li W, et al. Imaging the adult with simple shunt lesions: position paper from the EACVI and the ESC WG on ACHD. Endorsed by AEPC (Association for European Paediatric and Congenital Cardiology). Eur Heart J Cardiovasc Imaging. 2021;22:e58–70.

    PubMed  Google Scholar 

  24. Leiner T, Bogaert J, Friedrich MG, et al. SCMR Position Paper on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2020;22:76.

    PubMed  PubMed Central  Google Scholar 

  25. Jensen AS, Broberg CS, Rydman R, et al. Impaired right, left, or biventricular function and resting oxygen saturation are associated with mortality in Eisenmenger syndrome: a clinical and cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2015;8:e003596.

    PubMed  Google Scholar 

  26. Pushparajah K. Non-invasive imaging in the evaluation of cardiac shunts for interventional closure. Front Cardiovasc Med. 2021;8:651726.

    PubMed  PubMed Central  Google Scholar 

  27. Greil G, Tandon AA, Silva Vieira M. 3D whole heart imaging for congenital heart disease. Front Pediatr. 2017;5:36.

    PubMed  PubMed Central  Google Scholar 

  28. Kourtidou S, Jones MR, Moore RA, et al. mDixon ECG-gated 3-dimensional cardiovascular magnetic resonance angiography in patients with congenital cardiovascular disease. J Cardiovasc Magn Reson. 2019;21:52.

    PubMed  PubMed Central  Google Scholar 

  29. Körperich H, Gieseke J, Esdorn H, et al. Ultrafast time-resolved contrast-enhanced 3D pulmonary venous cardiovascular magnetic resonance angiography using SENSE combined with CENTRA-keyhole. J Cardiovasc Magn Reson. 2007;9:77–87.

    PubMed  Google Scholar 

  30. Thomson LE, Crowley AL, Heitner JF, et al. Direct en face imaging of secundum atrial septal defects by velocity-encoded cardiovascular magnetic resonance in patients evaluated for possible transcatheter closure. Circ Cardiovasc Imaging. 2008;1:31–40.

    PubMed  Google Scholar 

  31. Wang ZJ, Reddy GP, Gotway MB, et al. Cardiovascular shunts: MR imaging evaluation. Radiographics. 2003;23 Spec:S181–94.

    Google Scholar 

  32. Holtackers RJ, Van De Heyning CM, Nazir MS, et al. Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. J Cardiovasc Magn Reson. 2019;21:44.

    PubMed  PubMed Central  Google Scholar 

  33. Fahmy AS, Neisius U, Tsao CW, et al. Gray blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of myocardial scar. J Cardiovasc Magn Reson. 2018;20:22.

    PubMed  PubMed Central  Google Scholar 

  34. Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson. 2020;22:19.

    PubMed Central  Google Scholar 

  35. Craft J, Li Y, Bhatti S, Cao JJ. How to do left atrial late gadolinium enhancement: a review. Radiol Med. 2021;126:1159–69.

    PubMed  Google Scholar 

  36. Maceira AM, Cosín-Sales J, Roughton M, et al. Reference right atrial dimensions and volume estimation by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:29.

    PubMed  PubMed Central  Google Scholar 

  37. Nacif MS, Barranhas AD, Turkbey E, et al. Left atrial volume quantification using cardiac MRI in atrial fibrillation: comparison of the Simpson’s method with biplane area-length, ellipse, and three-dimensional methods. Diagn Interv Radiol. 2013;19:213–20.

    PubMed  Google Scholar 

  38. Devos DG, Kilner PJ. Calculations of cardiovascular shunts and regurgitation using magnetic resonance ventricular volume and aortic and pulmonary flow measurements. Eur Radiol. 2010;20:410–21.

    PubMed  Google Scholar 

  39. Powell AJ, Tsai-Goodman B, Prakash A, et al. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003;91:1523–5.

    PubMed  Google Scholar 

  40. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22:651–71.

    PubMed  Google Scholar 

  41. Reiter U, Reiter G, Fuchsjäger M. MR phase-contrast imaging in pulmonary hypertension. Br J Radiol. 2016;89:20150995.

    PubMed  PubMed Central  Google Scholar 

  42. Urmeneta Ulloa J, Álvarez Vázquez A, Martínez de Vega V, et al. Evaluation of cardiac shunts with 4D flow cardiac magnetic resonance: intra- and interobserver variability. J Magn Reson Imaging. 2020;52:1055–63.

    PubMed  Google Scholar 

  43. Kilner PJ, Gatehouse PD, Firmin DN. Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007;9:723–8.

    PubMed  Google Scholar 

  44. Kilner PJ, Geva T, Kaemmerer H, et al. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31:794–805.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Voges .

Editor information

Editors and Affiliations

6.1 Electronic Supplementary Material

Movie 6.1

Large superior sinus venosus defect with pulmonary hypertension (MP4 1186 kb)

Movie 6.2

Same patient as in movie 6.1. The RV is hypertrophied and the main pulmonary artery is dilated (MP4 1153 kb)

Movie 6.3

Coronary sinus defect (AVI 2256 kb)

Movie 6.4

Same patient as in movie 6.3. There is no associated left persistent superior vena cava. Please note the increased LV trabeculations in the four-chamber view (AVI 2256 kb)

Movie 6.5

Central perimembranous VSD with aneurysm. There is a shunt from the LV to the right atrium across the defect (AVI 3421 kb)

Movie 6.6

Same patient as in movie 6.5. Central perimembranous VSD with aneurysm. There is a shunt from the LV to the right atrium across the defect (AVI 3421 kb)

Movie 6.7

Patient after surgical VSD closure and postoperative RVOT obstruction. There is a narrowing with flow turbulences in the RVOT cine view (AVI 2827 kb)

Movie 6.8

SSFP cine images showing an inferior sinus venosus defect (AVI 1990 kb)

Movie 6.9

Partial anomalous pulmonary venous drainage into the superior vena cava (AVI 2247 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voges, I., Krupickova, S. (2023). Septal Defects. In: Syed, M.A., Mohiaddin, R.H. (eds) Magnetic Resonance Imaging of Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-29235-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29235-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29234-7

  • Online ISBN: 978-3-031-29235-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics