Skip to main content

Abstract

Some particular aspects of performing cardiac magnetic resonance (CMR) in children with congenital heart disease (CHD) are discussed in the chapter. Paediatric setting for CMR includes availability of anaesthesia, with an experienced team taking care of the high-risk patients, as well as CMR-compatible ventilatory and monitoring equipment. Changes in the acquisition parameters are required for adapting spatial resolution to the small patient size and temporal resolution to the fast heart rate. Indication for CMR in newborns and infants consists mainly of completing anatomical assessment after echocardiography in complex CHD, such as complex conotruncal anomalies and heterotaxy syndrome. By combining 2D or 3D steady-state free precession (SSFP) sequences and CEMRA for anatomical evaluation and cine SSFP and flow sequences for functional quantification, all the required information except pulmonary arterial pressure and resistance can be obtained non-invasively and safely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valsangiacomo Buechel ER, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. Eur Heart J Cardiovasc Imaging. 2015;16(3):281–97.

    CAS  PubMed  Google Scholar 

  2. Kellenberger CJ, Yoo S-J, Büchel ERV. Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics. 2007;27(1):5–18.

    PubMed  Google Scholar 

  3. van der Ven JPG, et al. Multicentre reference values for cardiac magnetic resonance imaging derived ventricular size and function for children aged 0-18 years. Eur Heart J Cardiovasc Imaging. 2020;21(1):102–13.

    PubMed  Google Scholar 

  4. Bailliard F, Hughes ML, Taylor AM. Introduction to cardiac imaging in infants and children: techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions. Eur J Radiol. 2008;68(2):191–8.

    PubMed  Google Scholar 

  5. Valsangiacomo Büchel ER, et al. Contrast-enhanced magnetic resonance angiography of the great arteries in patients with congenital heart disease: an accurate tool for planning catheter-guided interventions. Int J Cardiovasc Imaging. 2005;21(2):313–22.

    PubMed  Google Scholar 

  6. Chung T. Magnetic resonance angiography of the body in pediatric patients: experience with a contrast-enhanced time-resolved technique. Pediatr Radiol. 2005;35(1):3–10.

    PubMed  Google Scholar 

  7. Mendichovszky IA, et al. Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol. 2008;38(5):489–96; quiz 602–3.

    PubMed  Google Scholar 

  8. Seeger A, et al. Three-dimensional cine MRI in free-breathing infants and children with congenital heart disease. Pediatr Radiol. 2009;39(12):1333–42.

    PubMed  Google Scholar 

  9. Moghari MH, et al. Free-breathing whole-heart 3D cine magnetic resonance imaging with prospective respiratory motion compensation. Magn Reson Med. 2018;80(1):181–9.

    PubMed  Google Scholar 

  10. Krishnamurthy R, et al. Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children. J Cardiovasc Magn Reson. 2015;17(1):1.

    PubMed  Google Scholar 

  11. Steeden JA, et al. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. J Cardiovasc Magn Reson. 2018;20(1):79.

    PubMed  PubMed Central  Google Scholar 

  12. Moghari MH, et al. Accelerated whole-heart MR angiography using a variable-density poisson-disc undersampling pattern and compressed sensing reconstruction. Magn Reson Med. 2018;79(2):761–9.

    CAS  PubMed  Google Scholar 

  13. Kocaoglu M, et al. Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults. J Cardiovasc Magn Reson. 2020;22(1):54.

    PubMed  PubMed Central  Google Scholar 

  14. Dyverfeldt P, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17(1):72.

    PubMed  PubMed Central  Google Scholar 

  15. Geiger J, et al. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol. 2021;51(8):1503–17.

    PubMed  Google Scholar 

  16. Tariq U, et al. Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J Magn Reson Imaging. 2013;37(6):1419–26.

    PubMed  Google Scholar 

  17. Gabbour M, et al. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr Radiol. 2015;45(6):804–13.

    PubMed  Google Scholar 

  18. Odegard KC, et al. Anaesthesia considerations for cardiac MRI in infants and small children. Pediatr Anesth. 2004;14(6):471–6.

    Google Scholar 

  19. Committee on Drugs. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatrics. 1992;89(6):1110–5.

    Google Scholar 

  20. Sarikouch S, et al. Cardiovascular magnetic resonance imaging for intensive care infants: safe and effective? Pediatr Cardiol. 2009;30(2):146–52.

    PubMed  Google Scholar 

  21. Dorfman AL, et al. Risk factors for adverse events during cardiovascular magnetic resonance in congenital heart disease. J Cardiovasc Magn Reson. 2007;9(5):793–8.

    PubMed  Google Scholar 

  22. Windram J, et al. Cardiovascular MRI without sedation or general anesthesia using a feed-and-sleep technique in neonates and infants. Pediatr Radiol. 2012;42(2):183–7.

    PubMed  Google Scholar 

  23. Shariat M, et al. Utility of feed-and-sleep cardiovascular magnetic resonance in young infants with complex cardiovascular disease. Pediatr Cardiol. 2015;36(4):809–12.

    PubMed  Google Scholar 

  24. Krishnamurthy R, Lee EY. Congenital cardiovascular malformations: noninvasive imaging by MRI in neonates. Magn Reson Imaging Clin N Am. 2011;19(4):813–22; viii.

    PubMed  Google Scholar 

  25. Yim D, et al. Disharmonious patterns of heterotaxy and isomerism: how often are the classic patterns breached? Circ Cardiovasc Imaging. 2018;11(2):e006917.

    PubMed  Google Scholar 

  26. Geva T, et al. Role of spin echo and cine magnetic resonance imaging in presurgical planning of heterotaxy syndrome. Comparison with echocardiography and catheterization. Circulation. 1994;90(1):348–56.

    CAS  PubMed  Google Scholar 

  27. Valsangiacomo ER, et al. Contrast-enhanced MR angiography of pulmonary venous abnormalities in children. Pediatr Radiol. 2003;33(2):92–8.

    PubMed  Google Scholar 

  28. Brown DW, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007;116(23):2718–25.

    PubMed  Google Scholar 

  29. Banka P, et al. What is the clinical utility of routine cardiac catheterization before a Fontan operation? Pediatr Cardiol. 2010;31(7):977–85.

    PubMed  PubMed Central  Google Scholar 

  30. Brown DW, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial. J Thorac Cardiovasc Surg. 2013;146(5):1172–8.

    PubMed  Google Scholar 

  31. Gartenberg AJ, et al. Variation in advanced diagnostic imaging practice patterns and associated risks prior to superior cavopulmonary connection: a multicenter analysis. Pediatr Cardiol. 2021;43:497.

    PubMed  Google Scholar 

  32. Grosse-Wortmann L, et al. Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg. 2008;136(6):1429–36.

    PubMed  Google Scholar 

  33. Bhatla P, et al. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions? Pediatr Cardiol. 2017;38(1):103–14.

    PubMed  Google Scholar 

  34. Valverde I, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg. 2017;52(6):1139–48.

    PubMed  Google Scholar 

  35. Soriano BD, et al. Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance. Circulation. 2008;117(14):1842–8.

    PubMed  Google Scholar 

  36. Powell AJ, et al. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2000;21(2):104–10.

    CAS  PubMed  Google Scholar 

  37. De Oliveira Nunes M, et al. Multi-institution assessment of the use and risk of cardiovascular computed tomography in pediatric patients with congenital heart disease. J Cardiovasc Comput Tomogr. 2021;15(5):441–8.

    PubMed  PubMed Central  Google Scholar 

  38. Raimondi F, Warin-Fresse K. Computed tomography imaging in children with congenital heart disease: indications and radiation dose optimization. Arch Cardiovasc Dis. 2016;109(2):150–7.

    PubMed  Google Scholar 

  39. Han BK, et al. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):475–92.

    PubMed  Google Scholar 

  40. Han BK, et al. Multi-institutional evaluation of the indications and radiation dose of functional cardiovascular computed tomography (CCT) imaging in congenital heart disease. Int J Cardiovasc Imaging. 2016;32(2):339–46.

    Google Scholar 

  41. Ramirez-Suarez KI, et al. Optimizing neonatal cardiac imaging (magnetic resonance/computed tomography). Pediatr Radiol. 2022;52:661.

    PubMed  Google Scholar 

  42. Mehta R, et al. Complications of pediatric cardiac catheterization: a review in the current era. Catheter Cardiovasc Interv. 2008;72(2):278–85.

    PubMed  Google Scholar 

  43. Callaghan FM, et al. Flow quantification dependency on background phase correction techniques in 4D-flow MRI. Magn Reson Med. 2020;83(6):2264–75.

    PubMed  Google Scholar 

  44. Valsangiacomo Büchel ER. Normal right- and left ventricular volumes and myocardial mass in children measured by steady stase free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19.

    Google Scholar 

  45. Kaiser T, Kellenberger C, Albisetti M, Bergsträsser E, Valsangiacomo Buechel E. Normal values for aortic diameters in children and adolescents - assessment in vivo by contrast enhanced MR-angiography. J Cardiovasc Magn Reson. 2008;10(1):56.

    PubMed  PubMed Central  Google Scholar 

  46. Valsangiacomo Buechel ER, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela R. Valsangiacomo Buechel .

Editor information

Editors and Affiliations

20.1 Electronic Supplementary Materials

Movie 20.1

4D flow visualization as path-lines tracking in a small infant with total anomalous pulmonary venous connection of supracardiac type (MP4 460 kb)

Movie 20.2

4D flow in a modified axial plane in a 2 years old boy with a large sinus venosus atrial septal defect. Velocity-vectors help to visualise the site and size of intracardiac shunt. Quantification of flow results in a shunt of 2.7:1 = (pulmonary flow):(systemic flow) (AVI 40020 kb)

Movie 20.3

Patient with heterotaxy syndrome and unbalanced atrioventricular septal defect. SSFP imaging in a short axis provides exact quantification of the volume of the ventricles, allowing clinical decision for biventricular or univentricular repair, as it was in this case (MPG 120 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valsangiacomo Buechel, E.R. (2023). Paediatric CMR. In: Syed, M.A., Mohiaddin, R.H. (eds) Magnetic Resonance Imaging of Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-29235-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29235-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29234-7

  • Online ISBN: 978-3-031-29235-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics