Skip to main content

Coronary Artery Anomalies

  • Chapter
  • First Online:
Magnetic Resonance Imaging of Congenital Heart Disease
  • 312 Accesses

Abstract

Anomalies of the coronary arteries are paradoxically among the simplest and yet most difficult of subjects to understand in congenital heart disease. Disconcertingly, even the definition of what constitutes an “anomalous” vessel has been disputed in the past. In this chapter we discuss the definition and clinical presentation of common coronary anomalies. We take a look at the use of imaging, particular cardiovascular magentic resonance imaging, for understanding the significance and clinical impact of anomalies and make the case for a direct link between imaging findings and subsequent medical and surgical decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brothers J, Gaynor JW, Paridon S, Lorber R, Jacobs M. Anomalous aortic origin of a coronary artery with an interarterial course: understanding current management strategies in children and young adults. Pediatr Cardiol. 2009;30(7):911–21.

    PubMed  Google Scholar 

  2. Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of valsalva, A not-so-minor congenital anomaly. Circulation. 1974;50(4):780–7.

    CAS  PubMed  Google Scholar 

  3. Cheitlin MD. Finding asymptomatic people with a coronary artery arising from the wrong sinus of valsalva: consequences arising from knowing the anomaly to be familial. J Am Coll Cardiol. 2008;51(21):2065–7.

    PubMed  Google Scholar 

  4. Boon B. Leonardo da vinci on atherosclerosis and the function of the sinuses of valsalva. Neth Heart J. 2009;17(12):496–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Morgagni G. The seats and causes of diseases investigated by anatomy; in five books,: Containing A great variety of dissections, with remarks. to which are added very accurate and copious indexes of the principal things and names therein contained. translated from the latin of john baptist morgagni, chief professor of anatomy, and president of the university at padua, by benjamin alexander, M. D. in three volumes. ... . London: printed for A. Millar; and T. Cadell.

    Google Scholar 

  6. Angelini P. Normal and anomalous coronary arteries: definitions and classification. Am Heart J. 1989;117(2):418–34.

    CAS  PubMed  Google Scholar 

  7. Jacobs ML, Mavroudis C. Anomalies of the coronary arteries: nomenclature and classification. Cardiol Young. 2010;20(Suppl 3):15–9.

    Google Scholar 

  8. Anderson RH, Spicer D. Fistulous communications with the coronary arteries in the setting of hypoplastic ventricles. Cardiol Young. 2010 Dec;20(Suppl 3):86–91.

    PubMed  Google Scholar 

  9. Angelini P, Fairchild VD, editors. Coronary artery anomalies: a comprehensive approach. Philadelphia: Lippincott Williams & Wilkins; 1999.

    Google Scholar 

  10. Brothers JA, Gaynor JW, Jacobs JP, Caldarone C, Jegatheeswaran A, Jacobs ML, et al. The registry of anomalous aortic origin of the coronary artery of the congenital heart surgeons’ society. Cardiol Young. 2010;20(Suppl 3):50–8.

    PubMed  Google Scholar 

  11. Gawor R, Kusmierek J, Plachcinska A, Bienkiewicz M, Drozdz J, Piotrowski G, et al. Myocardial perfusion GSPECT imaging in patients with myocardial bridging. J Nucl Cardiol. 2011;18(6):1059–65.

    PubMed  Google Scholar 

  12. Hakeem A, Cilingiroglu M, Leesar MA. Hemodynamic and intravascular ultrasound assessment of myocardial bridging: fractional flow reserve paradox with dobutamine versus adenosine. Catheter Cardiovasc Interv. 2010;75(2):229–36.

    PubMed  Google Scholar 

  13. Thiene G, Carturan E, Corrado D, Basso C. Prevention of sudden cardiac death in the young and in athletes: dream or reality? Cardiovasc Pathol. 2010;19(4):207–17.

    PubMed  Google Scholar 

  14. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085–92.

    PubMed  Google Scholar 

  15. Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–34.

    PubMed  Google Scholar 

  16. Hill SF, Sheppard MN. Non-atherosclerotic coronary artery disease associated with sudden cardiac death. Heart. 2010;96(14):1119–25.

    PubMed  Google Scholar 

  17. Baroldi G. In: Scomazzoni G, United States, Armed Forces Institute of Pathology (U.S.), editors. Coronary circulation in the normal and the pathologic heart. Washington: Armed Forces Institute of Pathology [for sale by the Supt. of Docs.]; 1967.

    Google Scholar 

  18. Davies JE, Burkhart HM, Dearani JA, Suri RM, Phillips SD, Warnes CA, et al. Surgical management of anomalous aortic origin of a coronary artery. Ann Thorac Surg. 2009;88(3):844–7; discussion 847–8.

    PubMed  Google Scholar 

  19. De Luca L, Bovenzi F, Rubini D, Niccoli-Asabella A, Rubini G, De Luca I. Stress-rest myocardial perfusion SPECT for functional assessment of coronary arteries with anomalous origin or course. J Nucl Med. 2004;45(4):532–6.

    Google Scholar 

  20. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Catheter Cardiovasc Diagn. 1990;21(1):28–40.

    CAS  Google Scholar 

  21. Zhang LJ, Yang GF, Huang W, Zhou CS, Chen P, Lu GM. Incidence of anomalous origin of coronary artery in 1879 chinese adults on dual-source CT angiography. Neth Heart J. 2010;18(10):466–70.

    CAS  PubMed Central  Google Scholar 

  22. Angelini P, Flamm SD. Newer concepts for imaging anomalous aortic origin of the coronary arteries in adults. Catheter Cardiovasc Interv. 2007;69(7):942–54.

    PubMed  Google Scholar 

  23. Crean AM, Kilcullen N, Younger JF. Arrhythmic acute coronary syndrome and anomalous left main stem artery: culprit or innocent bystander. Acute Card Care. 2008;10(1):60–1.

    PubMed  Google Scholar 

  24. McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, Manning WJ. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation. 1995;92(11):3158–62.

    CAS  PubMed  Google Scholar 

  25. Post JC, van Rossum AC, Hofman MB, Valk J, Visser CA. Protocol for two-dimensional magnetic resonance coronary angiography studied in three-dimensional magnetic resonance data sets. Am Heart J. 1995;130(1):167–73.

    CAS  Google Scholar 

  26. Vliegen HW, Doornbos J, de Roos A, Jukema JW, Bekedam MA, van der Wall EE. Value of fast gradient echo magnetic resonance angiography as an adjunct to coronary arteriography in detecting and confirming the course of clinically significant coronary artery anomalies. Am J Cardiol. 1997;79(6):773–6.

    CAS  PubMed  Google Scholar 

  27. Bekedam MA, Vliegen HW, Doornbos J, Jukema JW, de Roos A, van der Wall EE. Diagnosis and management of anomalous origin of the right coronary artery from the left coronary sinus. Int J Card Imaging. 1999;15(3):253–8.

    CAS  PubMed  Google Scholar 

  28. White CS, Laskey WK, Stafford JL, NessAiver M. Coronary MRA: use in assessing anomalies of coronary artery origin. J Comput Assist Tomogr. 1999;23(2):203–7.

    CAS  Google Scholar 

  29. Taylor AM, Thorne SA, Rubens MB, Jhooti P, Keegan J, Gatehouse PD, et al. Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation. 2000;101(14):1670–8.

    CAS  PubMed  Google Scholar 

  30. Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, Newburger JW, et al. Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation. 2002;105(8):908–11.

    PubMed  Google Scholar 

  31. Bunce NH, Lorenz CH, Keegan J, Lesser J, Reyes EM, Firmin DN, et al. Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology. 2003;227(1):201–8.

    PubMed  Google Scholar 

  32. Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Baras P, et al. Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol. 2004;43(4):649–52.

    PubMed  Google Scholar 

  33. Su JT, Chung T, Muthupillai R, Pignatelli RH, Kung GC, Diaz LK, et al. Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol. 2005;95(5):679–82.

    PubMed  Google Scholar 

  34. Taylor AM, Dymarkowski S, Hamaekers P, Razavi R, Gewillig M, Mertens L, et al. MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology. 2005;234(2):542–7.

    PubMed  Google Scholar 

  35. Takemura A, Suzuki A, Inaba R, Sonobe T, Tsuchiya K, Omuro M, et al. Utility of coronary MR angiography in children with Kawasaki disease. AJR Am J Roentgenol. 2007;188(6):W534–9.

    PubMed  Google Scholar 

  36. Gharib AM, Ho VB, Rosing DR, Herzka DA, Stuber M, Arai AE, et al. Coronary artery anomalies and variants: technical feasibility of assessment with coronary MR angiography at 3 T. Radiology. 2008;247(1):220–7.

    PubMed  Google Scholar 

  37. Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Korperich H. Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magn Reson Imaging. 2009;29(2):320–7.

    Google Scholar 

  38. Clemente A, Del Borrello M, Greco P, Mannella P, Di Gregorio F, Romano S, et al. Anomalous origin of the coronary arteries in children: diagnostic role of three-dimensional coronary MR angiography. Clin Imaging. 2010;34(5):337–43.

    PubMed  Google Scholar 

  39. Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, et al. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259(1):240–7.

    PubMed  Google Scholar 

  40. Rajiah P, Setser RM, Desai MY, Flamm SD, Arruda JL. Utility of free-breathing, whole-heart, three-dimensional magnetic resonance imaging in the assessment of coronary anatomy for congenital heart disease. Pediatr Cardiol. 2011;32(4):418–25.

    PubMed  Google Scholar 

  41. Gui D, Tsekos NV. Dynamic imaging of contrast-enhanced coronary vessels with a magnetization prepared rotated stripe keyhole acquisition. J Magn Reson Imaging. 2007;25(1):222–30.

    PubMed  Google Scholar 

  42. Nakamura M, Kido T, Kido T, Watanabe K, Schmidt M, Forman C, Mochizuki T. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: a comparison with conventional imaging. Eur J Radiol. 2018;104:43–8. https://doi.org/10.1016/j.ejrad.2018.04.025; Epub 2018 Apr 27.

    Article  PubMed  Google Scholar 

  43. Hirai K, Kido T, Kido T, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, Kurata A, Watanabe K, Yamaguchi O, Schmidt M, Forman C, Mochizuki T. Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson. 2020;22(1):15. https://doi.org/10.1186/s12968-020-0601-0.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ishida M, Schuster A, Takase S, Morton G, Chiribiri A, Bigalke B, Schaeffter T, Sakuma H, Nagel E. Impact of an abdominal belt on breathing patterns and scan efficiency in whole-heart coronary magnetic resonance angiography: comparison between the UK and Japan. J Cardiovasc Magn Reson. 2011;13(1):71. https://doi.org/10.1186/1532-429X-13-71.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ishida M, Schuster A, Takase S, Morton G, Chiribiri A, Bigalke B, et al. Impact of an abdominal belt on breathing patterns and scan efficiency in whole-heart coronary magnetic resonance angiography: comparison between the UK and Japan. J Cardiovasc Magn Reson. 2011;13:71.

    PubMed  PubMed Central  Google Scholar 

  46. Tobler D, Motwani M, Wald RM, Roche SL, Verocai F, Iwanochko RM, Greenwood JP, Oechslin EN, Crean AM. Evaluation of a comprehensive cardiovascular magnetic resonance protocol in young adults late after the arterial switch operation for d-transposition of the great arteries. J Cardiovasc Magn Reson. 2014;16(1):98. https://doi.org/10.1186/s12968-014-0098-5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Deva DP, Torres FS, Wald RM, Roche SL, Jimenez-Juan L, Oechslin EN, Crean AM. The value of stress perfusion cardiovascular magnetic resonance imaging for patients referred from the adult congenital heart disease clinic: 5-year experience at the Toronto General Hospital. Cardiol Young. 2014;24(5):822–30. https://doi.org/10.1017/S104795111300111X; Epub 2013 Sep 18.

    Article  PubMed  Google Scholar 

  48. Laflamme E, Alonso-Gonzalez R, Roche SL, Wald RM, Swan L, Silversides CK, Thorne SA, Horlick EM, Benson LN, Osten M, Hickey E, Barron DJ, Colman JM, Oechslin E, Crean AM. Anomalous origin of a coronary artery from the pulmonary artery presenting in adulthood: experience from a tertiary center. Int J Cardiol Congenit Heart Dis. 2021;4:100169. https://doi.org/10.1016/j.ijcchd.2021.100169.

    Article  Google Scholar 

  49. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, Yoo SJ, Powell AJ. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15(1):51. https://doi.org/10.1186/1532-429X-15-51.

    Article  PubMed  Google Scholar 

  50. Strigl S, Beroukhim R, Valente AM, Annese D, Harrington JS, Geva T, et al. Feasibility of dobutamine stress cardiovascular magnetic resonance imaging in children. J Magn Reson Imaging. 2009;29(2):313–9.

    PubMed  Google Scholar 

  51. Song L, Ma X, Zhao X, Zhao L, DeLano M, Fan Y, Wu B, Lu A, Tian J, He L. Validation of black blood late gadolinium enhancement (LGE) for evaluation of myocardial infarction in patients with or without pathological Q-wave on electrocardiogram (ECG). Cardiovasc Diagn Ther. 2020;10(2):124–34. https://doi.org/10.21037/cdt.2019.12.11.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Backer CL, Stout MJ, Zales VR, Muster AJ, Weigel TJ, Idriss FS, et al. Anomalous origin of the left coronary artery. A twenty-year review of surgical management. J Thorac Cardiovasc Surg. 1992;103(6):1049–57; discussion 1057–8.

    CAS  PubMed  Google Scholar 

  53. Belli E, Roussin R, Ly M, Roubertie F, Le Bret E, Basaran M, et al. Anomalous origin of the left coronary artery from the pulmonary artery associated with severe left ventricular dysfunction: results in normothermia. Ann Thorac Surg. 2010;90(3):856–60.

    PubMed  Google Scholar 

  54. Ben Ali W, Metton O, Roubertie F, Pouard P, Sidi D, Raisky O, et al. Anomalous origin of the left coronary artery from the pulmonary artery: late results with special attention to the mitral valve. Eur J Cardiothorac Surg. 2009;36(2):244–8; discussion 248–9.

    PubMed  Google Scholar 

  55. Karunadasa R, Buxton BF, Dick R, Calafiore P. Anomalous origin of left coronary artery from the pulmonary artery does the management in the adult differ from that of the infant? Four cases of the bland-white-garland syndrome. Heart Lung Circ. 2007;16(Suppl 3):S29–33.

    PubMed  Google Scholar 

  56. Mavroudis C, Dodge-Khatami A, Stewart RD, Jacobs ML, Backer CL, Lorber RE. An overview of surgery options for congenital coronary artery anomalies. Futur Cardiol. 2010;6(5):627–45.

    Google Scholar 

  57. Wintersperger BJ, von Smekal A, Engelmann MG, Knez A, Penzkofer HV, Laub G, et al. Contrast media enhanced magnetic resonance angiography for determining patency of a coronary bypass. A comparison with coronary angiography. Rofo. 1997;167(6):572–8.

    CAS  PubMed  Google Scholar 

  58. Brenner P, Wintersperger B, von Smekal A, Agirov V, Bohm D, Kreuzer E, et al. Detection of coronary artery bypass graft patency by contrast enhanced magnetic resonance angiography. Eur J Cardiothorac Surg. 1999;15(4):389–93.

    CAS  PubMed  Google Scholar 

  59. Bunce NH, Lorenz CH, John AS, Lesser JR, Mohiaddin RH, Pennell DJ. Coronary artery bypass graft patency: assessment with true ast imaging with steady-state precession versus gadolinium-enhanced MR angiography. Radiology. 2003;227(2):440–6.

    PubMed  Google Scholar 

  60. Manso B, Castellote A, Dos L, Casaldaliga J. Myocardial perfusion magnetic resonance imaging for detecting coronary function anomalies in asymptomatic paediatric patients with a previous arterial switch operation for the transposition of great arteries. Cardiol Young. 2010;20(4):410–7.

    CAS  PubMed  Google Scholar 

  61. https://www.sciencedirect.com/science/article/pii/S2666668521000938.

  62. Schmitt R, Froehner S, Brunn J, Wagner M, Brunner H, Cherevatyy O, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography. Eur Radiol. 2005;15(6):1110–21.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Crean .

Editor information

Editors and Affiliations

16.1 Electronic Supplementary Materials

Movie 16.1

Axial whole heart magnetic resonance angiogram depicting the quality of coronary imaging that can be routinely achieved by CMR.

Movie 16.2

Coronal steady state free precession single shot coronal images acquired in quiet respiration for planning of a respiratory navigator sequence

Movie 16.3

4 chamber steady state free precession cine image acquired with a standard temporal resolution of 35-50 msec and reconstructed in 20 frames.

Movie 16.4

4 chamber steady state free precession cine image acquired with a high temporal resolution of 10 msec and reconstructed in 80 frames.

Movie 16.5

Dynamic cardiac CT maximum intensity projection coronal slab demonstrating direct compression of the left main and proximal left anterior descending coronary arteries during cardiac systole.

Movie 16.6

Full volume dynamic maximum intensity projection reconstruction of a gated cardiac CT in a patient with an anomalous right coronary artery from the pulmonary artery (ARCAPA).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crean, A. (2023). Coronary Artery Anomalies. In: Syed, M.A., Mohiaddin, R.H. (eds) Magnetic Resonance Imaging of Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-29235-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29235-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29234-7

  • Online ISBN: 978-3-031-29235-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics