Skip to main content

Graphene: A Promising Material for Flexible Electronic Devices

  • Chapter
  • First Online:
Recent Advances in Graphene Nanophotonics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 190))

  • 410 Accesses

Abstract

Today, the world is looking for ease of use, application materials, and carrying options. This is extended towards all material and electronic devices. Large applications and requirements are there for ease to use and flexible displays in the computational and telecommunication industry, and considerable work is targeted towards the same. Similarly, if solar cell applications are considered, a flexible solar cell would be elementary to install and use compared to their rigid equivalence. This results in a lookout towards polymeric counterparts for current rigid materials. Though some of these polymeric materials have shown excellent potential, their property tuning needs to be addressed to a greater extent to obtain the desired outcome and properties. These materials need to match the properties and applicability of materials like indium tin oxide (ITO) electrodes, which are weak, get more expensive, and are chemically unstable. As a promising material, graphene stands out due to its unique electrical and mechanical characteristics and excellent optical transmittance. This makes graphene a viable material for flexible transparent conductive electrodes. This has led to graphene’s widespread adoption in bendable electrical components like LEDs, PV cells, and field-effect transistors (FETs). However, some limitations must also be addressed for graphene to be used in flexible electronics. This chapter aims to overview graphene applications for energy storage devices, flexible solar cells, integrated circuits, etc. It would also shed light on the methods for overcoming the limitations of graphene to create flexible electronics that are both highly effective and reliable. Finally, the possible future developments will be outlined, providing a lookout towards further research opportunities for flexible electrical devices based on graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, T., Kim, H., Kwon, S., Lee, T.: Graphene-based flexible electronic devices. Mater. Sci. Eng. R. 118, 1–43 (2017)

    Article  Google Scholar 

  2. Yoon, J., et al.: Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources, Energy Environ. Sci., 10(1), 337–345 (2017)

    Google Scholar 

  3. Gupta, G., Zeng, M.: Applications of graphene-based materials in electronic devices (2017)

    Google Scholar 

  4. Olabi, A.G., Ali, M., Wilberforce, T., Taha, E.: Application of graphene in an energy storage device—A review. Renew. Sustain. Energy Rev. 135, 110026 (2021)

    Article  Google Scholar 

  5. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of grapheme. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Google Scholar 

  6. Jose Varghese, R., et al.: Introduction to nanomaterials: Synthesis and applications. Elsevier Inc. (2019)

    Google Scholar 

  7. Outline, C.: Optical properties of nanomaterials (2018)

    Google Scholar 

  8. Iqbal, T., Fatima, S., Bibi, T., Zafar, M.: Graphene and other two-dimensional materials in advance solar cells. Opt. Quantum Electron. 53(5), 1–22 (2021)

    Article  Google Scholar 

  9. Tiwari, S., Purabgola, A., Kandasubramanian, B.: Functionalised graphene as flexible electrodes for polymer photovoltaics. J. Alloys Compd. 825, 153954 (2020)

    Article  Google Scholar 

  10. Dong, Z., Kennedy, S.J., Wu, Y.: Electrospinning materials for energy-related applications and devices. J. Power Sources 196(11), 4886–4904 (2011)

    Google Scholar 

  11. Saleh, T.A.: Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020)

    Google Scholar 

  12. Ke, Q., Wang, J.: Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2(1), 37–54 (2016)

    MathSciNet  Google Scholar 

  13. Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014)

    Article  Google Scholar 

  14. Bakandritsos, A., Jakubec, P., Pykal, M., Otyepka, M.: Covalently functionalized graphene as a supercapacitor electrode material. FlatChem 13, 25–33 (2019)

    Article  Google Scholar 

  15. Tsang, C.H.A., Huang, H., Xuan, J., Wang, H., Leung, D.Y.C.: Graphene materials in green energy applications: recent development and future perspective. Renew. Sustain. Energy Rev. 120, 109656 (2020)

    Article  Google Scholar 

  16. Mbayachi, V.B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E.R., Ullah khan, A.: Graphene synthesis, characterization and its applications: a review. Results Chem. 3, 100163 (2021)

    Google Scholar 

  17. Mishra, R.K., Choi, G.J., Sohn, Y., Lee, S.H., Gwag, J.S.: Nitrogen-doped reduced graphene oxide as excellent electrode materials for high-performance energy storage device applications. Mater. Lett. 245, 192–195 (2019)

    Article  Google Scholar 

  18. Dhinakaran, V., Stalin, B., Sai, M.S., Vairamuthu, J., Marichamy, S.: Recent developments of graphene composites for energy storage devices. Mater. Today Proc. 45, 1779–1782 (2021)

    Article  Google Scholar 

  19. Zheng, X., Hu, Q., Zhou, X., Nie, W., Li, C., Yuan, N.: Graphene-based fibers for the energy devices application: a comprehensive review. Mater. Des. 201, 109476 (2021)

    Google Scholar 

  20. Liu, T., Zhang, L., Cheng, B., Hu, X., Yu, J.: Holey Graphene for electrochemical energy storage. Cell Reports Phys. Sci. 1, 100215 (2020)

    Article  Google Scholar 

  21. Lin, Y., et al.: Holey graphene nanomanufacturing: Structure, composition, and electrochemical properties. Adv. Funct. Mater. 25, 2920–2927 (2015)

    Article  Google Scholar 

  22. Dutta, D., et al.: Nanocatalyst-assisted fine tailoring of pore structure in holey-graphene for enhanced performance in energy storage. ACS Appl. Mater. Interfaces 11, 36560–36570 (2019)

    Article  Google Scholar 

  23. Wang, J., et al.: Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance. Nanoscale Horizons 4, 452–456 (2019)

    Article  Google Scholar 

  24. Xu, Y., et al.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, (2014)

    Google Scholar 

  25. Bai, Y., et al.: Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochim. Acta 187, 543–551 (2016)

    Article  Google Scholar 

  26. Liu, D., Li, Q., Zhao, H.: Electrolyte-assisted hydrothermal synthesis of holey graphene films for all-solid-state supercapacitors. J. Mater. Chem. A 6(24) 11471–11478 (2018)

    Google Scholar 

  27. Han, X., et al.: Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS Nano 8(8), 8255–8265 (2014)

    Article  Google Scholar 

  28. Walsh, E.D., et al.: Article for supercapacitors with ultrahigh areal loadings dry-processed, binder-free holey graphene electrodes for supercapacitors with ultrahigh areal loadings (2016)

    Google Scholar 

  29. Pei, J.: Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries. (2017)

    Google Scholar 

  30. Sammed, K.A., et al.: Reduced holey graphene oxide film and carbon nanotubes sandwich structure as a binder-free electrode material for supercapacitor. Sci. Rep. 10(1), 1–10 (2020)

    Google Scholar 

  31. Lv, J., Liang, T.: Nanoporous graphene obtained by the hydrothermal process in H2O2 and its application for supercapacitors. Chem. Phys. Lett. 659, 61–65 (2016)

    Article  Google Scholar 

  32. Manuscript, A.: ChemComm (2017)

    Google Scholar 

  33. Guo, C., Zhang, Y., Zeng, T., Huang, D., Wan, Q., Yang, N.: High-performance asymmetric supercapacitors using holey graphene electrodes and redox electrolytes. Carbon N. Y. 157, 298–307 (2020)

    Article  Google Scholar 

  34. Yang, C., Huang, P., Luo, X., Wang, C., Li, C.: Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic- liquid electrolyte. 1–9

    Google Scholar 

  35. Zang, P., Gao, S., Dang, L., Liu, Z., Lei, Z.: Green synthesis of holey graphene sheets and their assembly into aerogel with improved ion transport property. Electrochim. Acta 212, 171–178 (2016)

    Article  Google Scholar 

  36. Zhang, Y., et al.: Highly defective graphite for scalable synthesis of nitrogen-doped holey graphene with high volumetric capacitance. J. Power Sources 334, 104–111 (2016)

    Article  Google Scholar 

  37. Jiang, Z.J., Jiang, Z., Chen, W.: The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction. J. Power Sources 251, 55–65 (2014)

    Article  Google Scholar 

  38. Xu, P., et al.: A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitor. Carbon N. Y. 149, 452–461 (2019)

    Article  Google Scholar 

  39. Kan, Y., Ning, G., Ma, X.: Sulfur-decorated nanomesh graphene for high-performance supercapacitors. Chinese Chem. Lett. 28, 2277–2280 (2017)

    Article  Google Scholar 

  40. Online, V.A.: Sustainable energy & fuels hydrogel as a binder-free electrode material for 17–19 (2019)

    Google Scholar 

  41. Liu, J., Zhu, Y., Chen, X., Yi, W.: Nitrogen, sulfur and phosphorus tri-doped holey graphene oxide as a novel electrode material for application in supercapacitor. J. Alloys Compd. 815, 152328 (2020)

    Article  Google Scholar 

  42. Jia, S.: et al.: Microporous and mesoporous materials A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite for quasi-solid-state supercapacitors. Microporous Mesoporous Mater 109796 (2019)

    Google Scholar 

  43. Wu, S., Hui, K.S., Hui, K.N., Yun, J.M., Kim, K.H.: School of Materials Science and Engineering, Pusan National University, San 30 Global Frontier R & D Center for Hybrid Interface Materials, Pusan National University, Corresponding author. Chem. Eng. J. (2017)

    Google Scholar 

  44. Chai, Y., Li, Z., Wang, J., Mo, Z., Yang, S.: AC SC. J. Alloys Compd. (2018)

    Google Scholar 

  45. Wang, L., Deng, D., Salley, S.O., Ng, K.Y.S.: Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors. J. Mater. Sci. 50(19), 6313–6320

    Google Scholar 

  46. Lalwani, S., Sahu, V., Marichi, R.B., Singh, G., Sharma, R.K.: In situ immobilized, magnetite nanoplatelets over holey graphene nanoribbons for high performance solid state supercapacitor. Electrochim. Acta 224, 517–526 (2017)

    Article  Google Scholar 

  47. Song, Y., Wang, H., Liu, W., Wang, H., Yan, L.: Na2MoO4 as both etcher for three-dimensional holey graphene hydrogel and pseudo-capacitive feedstock for asymmetric supercapacitors. J. Alloys Compd. 780, 55–64 (2019)

    Article  Google Scholar 

  48. Zhai, S., et al.: Nano-RuO2-decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density. Small 14(29), 28–34 (2018)

    Google Scholar 

  49. Li, S., et al.: Hierarchical interpenetrating rHGO-decorated NiCo2O4 nanowires architectures for high-performance supercapacitors. Appl. Surf. Sci. 473(December 2018), 326–333 (2019)

    Google Scholar 

  50. Wang, C., et al.: Electrochimica acta A core-sheath holey graphene/graphite composite fi ber intercalated with MoS 2 nanosheets for high-performance fi ber supercapacitors. 305 (2019)

    Google Scholar 

  51. Tiruneh, S.N., Kang, K., Kwag, H., Lee, Y.: Synergistically active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors (2018) 1–9

    Google Scholar 

  52. Fan, Z., Zhu, J., Sun, X., Cheng, Z., Liu, Y., Wang, Y.: High density of free-standing holey graphene/PPy Films For Superior Volumetric Capacitance Of Supercapacitors. ACS Appl. Mater. Interfaces 9(26), 21763–21772 (2017)

    Google Scholar 

  53. Liu, J., Du, P., Wang, Q., Liu, D., Liu, P.: Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochim. Acta 305, 175–186 (2019)

    Article  Google Scholar 

  54. Du, P., Dong, Y., Kang, H., Wang, Q., Niu, J.: Electrochimica Acta Synthesis of holey graphene networks functionalized with p-phenylene diamine monomers for superior performance flexible solid-state supercapacitors. Electrochim. Acta 320, 134610 (2019)

    Article  Google Scholar 

  55. Wang, X., et al.: Organic molecule electrode with high capacitive performance originating from efficient collaboration between caffeic acid and graphene & graphene nanomesh hydrogel. Electrochim. Acta 326, 134953 (2019)

    Google Scholar 

  56. Fan, Z., Wang, Y., Xie, Z., Wang, D., Yuan, Y., Kang, H.: Modified mxene/holey graphene films for advanced supercapacitor electrodes with superior energy storage, vol. 1800750 (2018)

    Google Scholar 

  57. Han, J., Li, H., Yang, Q.H.: Compact energy storage enabled by graphenes: challenges, strategies and progress. Mater. Today 51, 552–565 (2021)

    Article  Google Scholar 

  58. Lv, W.: Graphene-based materials for electrochemical energy storage devices: opportunities and challenges (2018)

    Google Scholar 

  59. Alsharaeh, E., Ahmed, F., Aldawsari, Y., Khasawneh, M.: Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Nat. Publ. Gr. 1–13 (2016)

    Google Scholar 

  60. Online, V.A.: Ion batteries with enhanced electrochemical performance † (2013)

    Google Scholar 

  61. Zhao, X., Hayner, C.M., Kung, M.C., Kung, H.H.: Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11), 8739–8749 (2011)

    Google Scholar 

  62. Liang, J., et al.: Vacuum-dried 3D holey graphene frameworks enabling high mass loading and fast charge transfer for advanced batteries. Energy Technol. 8(3), 1–6 (2020)

    Article  Google Scholar 

  63. Xu, J., Lin, Y., Connell, J.W., Dai, L.: Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life. Small 11(46), 6179–6185 (2015)

    Article  Google Scholar 

  64. Dong, X., et al.: SC (2017)

    Google Scholar 

  65. Wang, X., et al.: High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of li-ion batteries. Adv. Energy Mater. 6(6) 1–7.

    Google Scholar 

  66. Online, V.A., Wang, L., Yang, S.: RSC Advances (2015)

    Google Scholar 

  67. Jiang, Z., Jiang, Z.: Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lit (2014)

    Google Scholar 

  68. Zhu, X., Song, X., Ma, X., Ning, G.: Enhanced electrode performance of Fe2O3 nanoparticle-decorated nanomesh graphene as anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(10) 7189–7197 (2014)

    Google Scholar 

  69. Chen, Z., Chen, J., Bu, F., Agboola, P.O., Shakir, I., Xu, Y.: Double-holey-heterostructure frameworks enable fast, stable, and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage. ACS Nano 12(12), 12879–12887 (2018)

    Google Scholar 

  70. Wu, D., et al.: γ-Fe2O3 nanoparticles stabilized by holey reduced graphene oxide as a composite anode for lithium-ion batteries. J. Colloid Interface Sci. 552, 633–638 (2019)

    Article  Google Scholar 

  71. Chen, C., Chen, H.W., Wu, C.Y., Huang, J.C., Duh, J.G.: Heterostructural modulation of in situ growth of iron oxide/holey graphene framework nanocomposites as excellent electrodes for advanced lithium-ion batteries. Appl. Surf. Sci. 485(March), 247–254 (2019)

    Article  Google Scholar 

  72. Materials Chemistry A (2019)

    Google Scholar 

  73. Ma, Z., Cao, H., Zhou, X., Deng, W., Liu, Z.: Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries. RSC Adv. 7(26), 15857–15863 (2017)

    Google Scholar 

  74. Wang, B.: 3D nanoporous graphene films converted from liquid-crystalline holey graphene oxide for thin and high-performance supercapacitors (2018)

    Google Scholar 

  75. Wu, D., Zhao, W., Wu, H., Chen, Z., Li, H., Zhang, L.Y.: Holey graphene confined hollow nickel oxide nanocrystals for lithium ion storage. Scr. Mater. 178, 187–192 (2020)

    Article  Google Scholar 

  76. Online, V.A.: Electrochemical process : ultra-high capacity and rate, 14023–14030 (2013)

    Google Scholar 

  77. INorganic chemistry (2019)

    Google Scholar 

  78. Stolyarova, S.G.: et al.: High-pressure high-temperature synthesis of MoS2/holey graphene hybrids and their performance in li-ion batteries. 1700262, 1–6 (2017)

    Google Scholar 

  79. Xu, L., et al.: Holey graphenes as the conductive additives for LiFePO4 batteries with an excellent rate performance. Carbon N. Y. 149, 257–262 (2019)

    Article  Google Scholar 

  80. Xiang, Y., Zhang, W., Chen, B., Jin, Z., Zhang, H.: Nano-Li4Ti5O12 particles in-situ deposited on compact holey-graphene framework for high volumetric power capability of lithium ion battery anode. J. Power Sources 447, 227372 (2020)

    Google Scholar 

  81. Lu, C., Chen, X.: Silver decorated graphene nanocomposites toward electrochemical energy storage. Chem. Phys. Lett. 771, 138534 (2021)

    Article  Google Scholar 

  82. Kumar, H., Sharma, R., Yadav, A., Kumari, R.: Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: a review. J. Energy Storage 33, 102032 (2021)

    Google Scholar 

  83. Tian, Y., Yu, Z., Cao, L., Zhang, X.L., Sun, C., Wang, D.W.: Graphene oxide: an emerging electromaterial for energy storage and conversion. J. Energy Chem. 55, 323–344 (2021)

    Article  Google Scholar 

  84. Fu, X., Xu, L., Li, J., Sun, X., Peng, H.: Flexible solar cells based on carbon nanomaterials. Carbon N. Y. 139, 1063–1073 (2018)

    Article  Google Scholar 

  85. Du, J., et al.: Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. Carbon N. Y. 171, 350–358 (2021)

    Article  Google Scholar 

  86. Yusoff, R.b.M.:Graphene-based energy devices (2015)

    Google Scholar 

  87. Dhinakaran, V., Stalin, B. Sai, M.S., Vairamuthu, J., Marichamy, S.: Materials today: proceedings recent developments of graphene composites for energy storage devices. Mater. Today Proc. (2020)

    Google Scholar 

  88. Riverola, A., et al.: Fundamentals of solar cells. Nanomater. Sol. Cell Appl. 7(May), 3–33 (2019)

    Article  Google Scholar 

  89. Jin et al. J.J.: Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. J. Power Sources 482, 228953 (2021)

    Google Scholar 

  90. Liu, Z., Li, J. Yan, F.: Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25(31), 4296–4301 (2013)

    Google Scholar 

  91. Jeon, I., et al.: Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells. J. Phys. Chem. Lett. 8(21), 5395–5401 (2017)

    Google Scholar 

  92. Ricciardulli, A.G., Yang, S., Feng, X., Blom, P.W.M.: Solution-processable high-quality graphene for organic solar cells. ACS Appl. Mater. Interfaces 9(30), 25412–25417 (2017)

    Google Scholar 

  93. Gao, Z.W., et al.: Tailoring the interface in FAPbI3 planar perovskite solar cells by imidazole-graphene-quantum-dots. Adv. Funct. Mater. 31(27), 1–7 (2021)

    Article  MathSciNet  Google Scholar 

  94. Foster, C.W.: 3D printed graphene based energy storage devices (2017)

    Google Scholar 

  95. Ye, Y., Dai, L.: Graphene-based Schottky junction solar cells. J. Mater. Chem. 22(46), 24224–24229 (2012)

    Google Scholar 

  96. Koo, D., et al.: Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule 4(5), 1021–1034 (2020)

    Article  Google Scholar 

  97. Song, Y., Chang, S., Gradecak, S., Kong, J. (2016). Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes, Adv. Energy Mater. 6(20), 1–8 (2016)

    Google Scholar 

  98. Heo, J.H., Shin, D.H., Song, D.H., Kim, D.H., Lee, S.J., Im, S.H.: Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A 6(18), 8251–8258 (2018)

    Google Scholar 

  99. Ruan, K. et al.: Flexible graphene/silicon heterojunction solar cells. J. Mater. Chem. A 3(27), 14370–14377 (2015)

    Google Scholar 

  100. Lu, S., Sun, Y., Ren, K., Liu, K., Wang, Z., Qu, S.: Recent development in ITO-free flexible polymer solar cells. Polymers (Basel) 10(1) (2018)

    Google Scholar 

  101. Fahlman, B.D., Materials chemistry. Mater. Chem. 207890, 1–485 (2007)

    Google Scholar 

  102. He, M., Jung, J., Qiu, F., Lin, Z.: Graphene-based transparent flexible electrodes for polymer solar cells. J. Mater. Chem. 22(46), 24254–24264 (2012)

    Article  Google Scholar 

  103. Jiao, T., et al.: Flexible solar cells based on graphene-ultrathin silicon Schottky junction. RSC Adv. 5(89), 73202–73206 (2015)

    Article  Google Scholar 

  104. Sengupta, J.: Graphene-induced performance enhancement of batteries, touch screens, transparent memory, and integrated circuits : a critical review on a decade of developments (2022)

    Google Scholar 

  105. Yoon, J.S., et al.: Source/drain patterning finfets as solution for physical area scaling toward 5-nm node. IEEE Access 7, 172290–172295 (2019)

    Article  Google Scholar 

  106. Lu, H.W., et al.: The promise of graphene-based transistors for democratizing multiomics studies. Biosens. Bioelectron. 195, 113605 (2022)

    Article  Google Scholar 

  107. Lemme, M.C., Member, S., Echtermeyer, T.J., Baus, M., Kurz, H.: 28(4), 1–12 (2007)

    Google Scholar 

  108. Sun, Y.L., et al.: Tunable transport characteristics of double-gated graphene field-effect transistors using P(VDF-TrFE) ferroelectric gating. Carbon N. Y. 96, 695–700 (2016)

    Article  Google Scholar 

  109. Vieira, N.C.S., et al.: Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm. J. Phys. Condens. Matter 28(8), 85302 (2016)

    Article  Google Scholar 

  110. Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science (80-.) 319(5867), 1229–1232 (2008)

    Google Scholar 

  111. Lee, J., et al.: 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7(9), 7744–7750 (2013)

    Article  Google Scholar 

  112. Lan, Y., et al.: Flexible graphene field-effect transistors with extrinsic fmax of 28 GHz. IEEE Electron Device Lett. 39(12), 1944–1947 (2018)

    Google Scholar 

  113. Montanaro, et al.: Optoelectronic mixing with high-frequency graphene transistors. Nat. Commun. 12(1) (2021)

    Google Scholar 

  114. Llinas, J.P., et al.: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8(1), 8–13 (2017)

    Article  Google Scholar 

  115. Ning, J., et al.: Flexible field-effect transistors with a high on/off current ratio based on large-area single-crystal graphene. Carbon N. Y. 163, 417–424 (2020)

    Article  Google Scholar 

  116. Martini, L., et al.: Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon N. Y. 146, 36–43 (2019)

    Article  Google Scholar 

  117. Jangid, P., Pathan, D., Kottantharayil, A.: Graphene nanoribbon transistors with high ION/IOFF ratio and mobility. Carbon N. Y. 132, 65–70 (2018)

    Article  Google Scholar 

  118. Lin, Y., Jenkins, K.A., Valdes-garcia, A., Small, J.P., Farmer, D.B., Avouris, P.: Nl803316H.Pdf. Nano Lett. 9(1), 422–426 (2009)

    Google Scholar 

  119. Lin, Y., et al.: 100-GHz transistors from. NANO 327(5966), 100 (2010)

    Google Scholar 

  120. Wu, Y., et al.: High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011)

    Google Scholar 

  121. Sire, C., et al.: Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12(3), 1184–1188 (2012)

    Article  Google Scholar 

  122. Liu, C., Ma, W., Chen, M., Ren, W., Sun, D.: A vertical silicon-graphene-germanium transistor. Nat. Commun. 10(1), 1–7 (2019)

    Google Scholar 

  123. Liao, L., et al.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)

    Article  Google Scholar 

  124. Lin, Y.M., et al.: Wafer-scale graphene integrated circuit. Science (80-. ). 332(6035), 1294–1297 (2011)

    Google Scholar 

  125. Feng, Z.H., et al.: An ultra clean self-aligned process for high maximum oscillation frequency graphene transistors. Carbon N. Y. 75, 249–254 (2014)

    Article  Google Scholar 

  126. Yeh, C.H., et al.: Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8(8), 7663–7670 (2014)

    Article  Google Scholar 

  127. Han, S.J., Garcia, A.V., Oida, S., Jenkins, K.A., Haensch, W.: Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 1–6 (2014)

    Article  Google Scholar 

  128. Bianchi, M., et al.: Scaling of graphene integrated circuits. Nanoscale 7(17), 8076–8083 (2015)

    Google Scholar 

  129. Hanna, T., Deltimple, N., Khenissa, M.S., Pallecchi, E., Happy, H., Frégonèse, S.: 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid. State. Electron. 127, 26–31 (2017)

    Article  Google Scholar 

  130. Vaziri, S., et al. Nl304305X.Pdf. no. c (2013)

    Google Scholar 

  131. Liu, C., et al.: A silicon-graphene-silicon transistor with an improved current gain. J. Mater. Sci. Technol. 104, 127–130 (2022)

    Article  Google Scholar 

  132. Fakih, I., et al.: Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11(1) 1–12 (2020)

    Google Scholar 

  133. Mutlu, Z., et al.: Bottom-up synthesized nanoporous graphene transistors. Adv. Funct. Mater. 31(47), 1–8 (2021)

    Google Scholar 

  134. Wu, F., et al.: Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603(7900) 259–264 (2022).

    Google Scholar 

  135. Han, T.H., et al.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6(2), 105–110 (2012)

    Google Scholar 

  136. Han, T.H., et al.: Versatile p-type chemical doping to achieve ideal flexible graphene electrodes. Angew. Chemie Int. Ed. 55(21), 6197–6201 (2016)

    Article  Google Scholar 

  137. Han, T.H,. Kwon, S.J., Seo, H.K., Lee, T.W.: Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices. 2D Mater 3(1) (2016)

    Google Scholar 

  138. Denis, P.A.: Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 492(4–6), 251–257 (2010)

    Article  Google Scholar 

  139. Bae, S., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    Google Scholar 

  140. Güneş, F., et al.: Layer-by-layer doping of few-layer graphene film. ACS Nano 4(8), 4595–4600 (2010)

    Article  Google Scholar 

  141. Pinto, H., Markevich, A.: Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J. Nanotechnol. 5(1), 1842–1848 (2014)

    Article  Google Scholar 

  142. Mali, K.S., Greenwood, J., Adisoejoso, J., Phillipson, R., De Feyter, S.: Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale 7(5), 1566–1585 (2015)

    Google Scholar 

  143. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)

    Google Scholar 

  144. Urban, J.M., et al.: Nitrogen doping of chemical vapor deposition grown graphene on 4H–SiC(0001). J. Appl. Phys. 115(23) (2014)

    Google Scholar 

  145. Dr. Xu, W., et al.: Controllable n-type doping on CVD-grown single—And double-layer graphene mixture. Adv. Mater. 27(9),1619–1623 (2015)

    Google Scholar 

  146. Shin, H., et al.: Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc.pdf 16, 15603–15609 (2010)

    Google Scholar 

  147. Liu, H., Liu, Y., Zhu, D.: Chemical doping of grapheme. J. Mater. Chem. 21(10), 3335–3345 (2011)

    Google Scholar 

  148. Lee, W.H., et al..: Acsnano_doping of CVD grown graphene b fluoropolymer for transparent.pdf. 2, 1284–1290 (2012)

    Google Scholar 

  149. Kim, K.K., et al.: Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21(28) (2010)

    Google Scholar 

  150. Jung, S.M., Jung, H.Y., Dresselhaus, M.S., Jung, Y.J., Kong, J.: A facile route for 3D aerogels from nanostructured 1D and 2D materials. Sci. Rep. 2(i), 1–6 (2012)

    Google Scholar 

  151. Park, H., et al.: Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett. 13(1), 233–239 (2013)

    Article  Google Scholar 

  152. Kim, H., et al.: On-fabrication solid-state N-doping of graphene by an electron-transporting metal oxide layer for efficient inverted organic solar cells. Adv. Energy Mater. 6(12), 1–8 (2016)

    Google Scholar 

  153. Wang, Y., Chen, X., Zhong, Y., Zhu, F., Loh, K.P.: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95(6), 2012–2015 (2009)

    Google Scholar 

Download references

Acknowledgements

These works were completed at the College of Engineering at Bharati Vidyapeeth (Deemed to be University), Pune, and the writers would like to express their gratitude to the university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshada Mhetre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chendake, Y. et al. (2023). Graphene: A Promising Material for Flexible Electronic Devices. In: Patel, S.K., Taya, S.A., Das, S., Vasu Babu, K. (eds) Recent Advances in Graphene Nanophotonics. Advanced Structured Materials, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-031-28942-2_5

Download citation

Publish with us

Policies and ethics