Skip to main content

Mineral Discoveries that Changed Everyday Life

  • Chapter
  • First Online:
Celebrating the International Year of Mineralogy

Abstract

This chapter depicts examples of discoveries in the field of mineralogy that have significantly impacted human life, blooming numerous areas of science and technology. In the past, these outstanding discoveries have been accomplished in a random or empirical way or based on practical experiences. Since the industrial revolution, these discoveries have been the outcome of a more systematic approach based on the advance of scientific studies that have revealed the very nature of specific materials. These new discoveries or technologies defined new lines of development, leading to a revolution in many areas of basic and applicative science. Selected examples of mineralogy-related discoveries for climate change, energy, industrial applications, health and environment are presented and discussed, with a window open for the future opportunities in a sustainable changing world. The last paragraph of this chapter leads the reader into the world of zeolites. Both natural and synthetic zeolites are probably the most outstanding impactful past, present (and future) mineral discoveries that changed our life and that’s why they deserve a full section dedicated to them.

The most exciting phrase to hear in Science, the one that heralds new discoveries, is not ‘Eureka!’ but ‘That’s funny…’

Isaac Asimov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad I, Ali F, Rahim F (2018) Clay based nanocomposites and their environmental applications. Dev Prospect App Nanosci Nanotech 2:166–190

    Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci Total Environ 532:112–126

    Google Scholar 

  • Alberti A, Cruciani G, Galli E, Merlino S, Millini R, Quartieri S, Vezzalini G, Zanardi S (2001) Pentasil zeolites from Antarctica: from mineralogy to zeolite science and technology. Stud Surf Sci Catal 135:83–91

    Google Scholar 

  • Alberti A, Cruciani G, Galli E, Merlino S, Millini R, Quartieri S, Vezzalini G, Zanardi S (2002) Crystal structure of tetragonal and monoclinic polytypes of tschernichite, the natural counterpart of synthetic zeolite beta. J Phys Chem B 106(39):10277–10284

    Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183

    Google Scholar 

  • Altaner SP, Ylagan RF (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Min 45(4):517–533

    Google Scholar 

  • Ardit M, Martucci A, Cruciani G (2015) Monoclinic-Orthorhombic Phase Transition in ZSM-5 Zeolite: Spontaneous Strain Variation and Thermodynamic Properties. J Phys Chem C 119(13):7351–7359

    Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. Rev Mineral Geochem 45:1–57

    Google Scholar 

  • Arguelles A, Leoni M, Blanco JA, Marcos C (2010) Semi-ordered crystalline structure of the Santa Olalla vermiculite inferred from X-ray powder diffraction. Am Min 95(1):126–134

    Google Scholar 

  • Arizzi A, Cultrone G (2021) Mortars and plasters—how to characterise hydraulic mortars. Arch and Anthropol Sci 13(9):1–22

    Google Scholar 

  • Aste N, Bocciolone M, Bogdanov D, Brost E, Breyer C, Burrows V, Ambel CC, Colombo E, Del Pero C, Earl T, Hafner M, Leonforte F, Masi M, Mazzoncini R, Noussan, M (2019) Roadmap to 2050 a manual for nations to decarbonize by mid-century. In: Roadmap to 2050 a manual for nations to decarbonize by mid-century. Sustainable Development Solutions Network and Fondazione Eni Enrico Mattei, 1–144

    Google Scholar 

  • Awasthi A, Jadhao P, Kumari K (2019) Clay nano-adsorbent: structures, applications and mechanism for water treatment. SN App Sci 1(9):1–21

    Google Scholar 

  • Amato A, Becci A, Maria, Villen-Guzman A, Carlos, Vereda-Alonso C, Beolchini F (2021) Challenges for sustainable lithium supply: a critical review. J Cleaner Prod 300:126954 (1–16)

    Google Scholar 

  • Baerlocher Ch, McCusker LB (1996) Database of Zeolite Structures, http://www.iza-structure.org/databases/. Accessed 31 Jan 2023

  • Baerlocher Ch, McCusker LB, Gies H, Marler B (2022) Database of Disordered Zeolite Structures, http://www.iza-structure.org/databases/. Accessed 31 Jan 2023

  • Ballirano P, Bloise A, Gualtieri AF et al (2017) The crystal structure of mineral fibres. In: Gualtieri AF (ed) Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity. European Mineralogical Union, London, pp 17–64

    Google Scholar 

  • Beardsmore T (2018) Western Australia: a battery metal powerhouse, Western Australia, Feb 13, 2018. http://dmpbookshop.eruditetechnologies.com.au/product/western-australia-a-battery-metal-powerhouse.do. Accessed 18 October 2022

  • Berman DW, Crump KS (2008) Update of potency factors for asbestos-related lung cancer and mesothelioma. Crit Rev in Tox 38(1):1–47

    Google Scholar 

  • Bernstein D, Dunnigan J, Hesterberg T, Brown R, Velasco JAL, Barrera R, Hoskins GA (2013) Health risk of chrysotile revisited. Crit Rev Toxicol 43:154–183

    Google Scholar 

  • Bish DL, Carey JW (2001) Thermal behavior of natural zeolites. Rev Mineral Geochem 45:403–452

    Google Scholar 

  • Boettinger JL, Ming DW (2002) Zeolites In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America Book Series

    Google Scholar 

  • Breck DW, Eversole WG, Milton RM (1956) New synthetic crystalline zeolites. J Am Chem Soc 78(10):2338–2339

    Google Scholar 

  • Buratti C, Belloni E, Merli F (2020) Water vapour permeability of innovative building materials from different waste. Materials Lett 265:127459

    Google Scholar 

  • Burchill S, Hall PL, Harrison R, Hayes MHB, Langford JI, Livingston WR, Smedley RJ, Ross DK, Tuck JJ (1983) Smectite-polymer interactions in aqueous systems. Clay Min 18(4):373–397

    Google Scholar 

  • Cecilia JA, Vilarrasa-García E, Cavalcante CL Jr, Azevedo DCS, Franco F, Rodríguez-Castellón E (2018) Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 Capture. J Env Chem Engin 6(4):4573–4587

    Google Scholar 

  • Calzaferri G, Lutkouskaya K (2008) Mimicking the antenna system of green plants. Photochem Photobiol Sci 7(8):879–910

    Google Scholar 

  • Casper JK (2007) Minerals: gifts from the Earth. Infobase Publishing, New York

    Google Scholar 

  • Cerri G, Farina M, Brundu A, Daković A, Giunchedi P, Gavini E, Rassu G (2016) Natural zeolites for pharmaceutical formulations: preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater 223:58–67

    Google Scholar 

  • Chang PH, Li Z, Jiang WT, Sarkar B (2019) Clay minerals for pharmaceutical wastewater treatment. Mod Clay and Zeolite Nanocomposite Mat, 167–196

    Google Scholar 

  • Choubey PK, Kim MS, Srivastava RR, Lee JC, Lee JY (2016) Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: from mineral and brine resources. Miner Eng 89 (Supplement C):119–137

    Google Scholar 

  • Chukanov NV, Pasero M, Aksenov SM, Britvin SN, Zubkova NV, Yike L, Witzke T (2022) Columbite supergroup of minerals: nomenclature and classification. Min Mag 1–53 in press

    Google Scholar 

  • Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Clays and clay minerals for pollution control. Dev Clay Sci 1:625–675

    Google Scholar 

  • Colella C, Gualtieri AF (2007) Cronstedt’s zeolite. Microporous Mesoporous Mater 105:213–221

    Google Scholar 

  • Colella C, de’ Gennaro M, Aiello R (2001) Use of zeolitic tuff in the building industry. Rev Mineral Geochem 45:551–587

    Google Scholar 

  • Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross MI, Sheppard RA, Tillmanns E, Vezzalini G (1997) Recommended nomenclature for zeolite minerals: report of the Subcommittee on Zeolites of International Mineralogical Association, Commission on new minerals and minerals names. Can Mineral 35:1571–1606

    Google Scholar 

  • Coudert FX, Boutin A, Fuchs AH (2021) Open questions on water confined in nanoporous materials. Commun Chem 4(1):106

    Google Scholar 

  • Crangle RD (2021) 2018 Minerals Yearbook, Zeolites [Advance Release], U.S. Geological Survey, U.S. Department of the Interior. https://pubs.usgs.gov/myb/vol1/2018/myb1-2018-zeolites.pdf

  • Cruciani G (2006) Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids 67(9–10):1973–1994

    Google Scholar 

  • Cruciani G, Gualtieri AF (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. Am Miner 84(1–2):112–119

    Google Scholar 

  • Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Brit Dental J 219(11):521–529

    Google Scholar 

  • De Brito J, Flores-Colen I (2015) Gypsum plasters. Materials for construction and civil engineering. Springer, Cham, pp 123–184

    Google Scholar 

  • Delawala I (2001) What Is Coltan? ABC News Nightline. Accessed online on October 14th, 2022 at http://rlaexp.com/studio/biz/conceptual_resources/vp/coltan.pdf

  • del Río-Merino M, Vidales-Barriguete A, Piña-Ramírez C, Vitiello V, Santa Cruz-Astorqui J, Castelluccio R (2022) A review of the research about gypsum mortars with waste aggregates. J Building Engin 45:103338

    Google Scholar 

  • Dent L, Smith JV (1958) Crystal structure of Chabazite, a Molecular Sieve. Nature 181:1794–1796

    Google Scholar 

  • Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan JF (2019) Spodumene: the lithium market, resources and processes. Minerals 9(6):334

    Google Scholar 

  • Doll R (1955) Mortality from lung cancer in asbestos workers. Br J Ind Med 12(2):81–86

    Google Scholar 

  • Drits VA, Sakharov BA, Hillier S (2018) Phase and structural features of tubular halloysite (7 Å). Clay Min 53(4):691–720

    Google Scholar 

  • Ercit TS, Wise MA, Černý P (1995) Compositional and structural systematics of the columbite group. Am Min 80(5–6):613–619

    Google Scholar 

  • Fabbri B, Bonoldi L, Guidi V, Cruciani G, Casotti D, Malagù C, Bellussi G, Millini R, Montanari L, Carati A, Rizzo C, Montanari E, Zanardi S (2017) Crystalline microporous organosilicates with reversed functionalities of organic and inorganic components for room-temperature gas sensing. ACS Appl Mater Interfaces 9(29):24812–24820

    Google Scholar 

  • Fantini R, Vezzalini G, Zambon A, Ferrari E, Di Renzo F, Fabbiani M, Arletti R (2021) Boosting sunscreen stability: new hybrid materials from UV filters encapsulation. Microporous Mesoporous Mater 328:111478

    Google Scholar 

  • Flanigen EM, Breck DW (1960) Crystalline zeolites, v—growth of zeolite crystals from gels. Cited by Cundy CS and Cox PA (2003) The hydrothermal synthesis of zeolites history and development from the earliest days to the present time. Chem Rev 103(3):663–702

    Google Scholar 

  • Gadikota G, Matter J, Kelemen P, Park AHA (2014) Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys Chem Chem Phys 16(10):4679–4693

    Google Scholar 

  • Galli E, Quartieri S, Vezzalini G, Alberti A (1996) Gottardiite, a new high-silica zeolite from Antarctica: the natural counterpart of synthetic NU-87. Eur J Mineral 8(4):687–693

    Google Scholar 

  • Galli E, Quartieri S, Vezzalini G, Alberti A, Franzini M (1997) Terranovaite from Antarctica: a new ‘pentasil’ zeolite. Amer Mineral 82(3–4):423–429

    Google Scholar 

  • Gapper C, Orton J (2011) Plaster, stucco and stuccoes. J Arch Conservation 17(3):7–22

    Google Scholar 

  • Garside M (2022). https://www.statista.com/statistics/268011/top-countries-in-rare-earth-mine-production/ Accessed 18 October 2022

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Mineral Mag 78(2):267–291

    Google Scholar 

  • Gies H, Marler B (2011) Crystal structure analysis in zeolite science In: Martínez C, Pérez-Pariente J (eds) Zeolites and ordered porous solids: fundamentals and applications. Universitat Politècnica de València, p 319

    Google Scholar 

  • Gencel O, del Coz Diaz JJ, Sutcu M, Koksal F, Rabanal FA, Martinez-Barrera G, Brostow W (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy Build 70:135–144

    Google Scholar 

  • Gourdin WH, Kingery WD (1975) The beginnings of pyrotechnology: Neolithic and Egyptian lime plaster. J Field Archaeology 2(1–2):133–150

    Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Springer, Berlin, p 409

    Google Scholar 

  • Grice JD, Ferguson RB, Hawthorne FC (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba; I. Tantalite and Ixiolite. Can Min 14(4):540–549

    Google Scholar 

  • Grim RE (1962) Clay mineralogy: the clay mineral composition of soils and clays is providing an understanding of their properties. Science 135(3507):890–898

    Google Scholar 

  • Gruber PW, Medina PA, Keoleian GA, Kesler SE, Everson MP, Wallington TJ (2011) Global lithium availability: a constraint for electric vehicles? J Ind Ecol 15(5):760–775

    Google Scholar 

  • Gualtieri AF (ed) (2017) Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity, vol 18. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, p 536

    Google Scholar 

  • Gualtieri AF (2018) Introduzione alle tecniche analitiche strumentali. Universitaria, Libreria, p 338

    Google Scholar 

  • Gualtieri AF (2021) Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Curr Res Tox 2:42–52

    Google Scholar 

  • Gualtieri AF (2022) Journey to the centre of the lung. The perspective of a mineralogist on the carcinogenic effects of mineral fibres in the lungs. J Haz Mat, 130077

    Google Scholar 

  • Gualtieri AF, Gatta GD, Arletti R, Artioli G, Ballirano P, Cruciani G, Guagliardi A, Malferrari D, Mascicchi N, Scardi P (2019) Quantitative phase analysis using the Rietveld method: towards a procedure for checking the reliability and quality of the results. Periodico Di Mineralogia 88(2):147–151

    Google Scholar 

  • Gualtieri AF, Lassinantti Gualtieri M, Scognamiglio V, Di Giuseppe D (2022) Human health hazards associated with asbestos in building materials. In: Ecological and health effects of building materials. Springer, Cham, 297–325

    Google Scholar 

  • Greaves GN, Meneau F, Sapelkin A, Colyer LM, Ap Gwynn I, Wade S, Sankar G (2003) The rheology of collapsing zeolites amorphized by temperature and pressure. Nat Mater 2(9):622–629

    Google Scholar 

  • Guyot F, Daval D, Dupraz S, Martinez I, Ménez B, Sissmann O (2011) CO2 geological storage: the environmental mineralogy perspective. Comptes Rendus Geosc 343(2–3):246–259

    Google Scholar 

  • Güven N (1988) Smectites. In: Bailey SW (ed) Hydrous phyllosilicates. Rev Mineralogy Mineralogical Soc Amer 19:497–559

    Google Scholar 

  • Hanchen M, Prigiobbe V, Baciocchi R, Mazzotti M (2008) Chem Eng Sci 63:1012–1028

    Google Scholar 

  • Hartman H, Cairns-Smith AG (1986) Clay minerals and the origin of life, workshop on clays and the origin of life; Glasgow, 18–24 July 1983. Cambridge University Press

    Google Scholar 

  • Hauptmann A, Yalcin Ü (2000) Lime plaster, cement and the first puzzolanic reaction. Paléorient, 61–68

    Google Scholar 

  • Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2(5):a002162

    Google Scholar 

  • Hills CD, Tripathi N, Carey PJ (2020) Mineralization technology for carbon capture, utilization, and storage. Front Energy Res 8(142):1–14

    Google Scholar 

  • Hoatson, DM, Jaireth S, Miezitis, Y (2011) The major rare-earth-element deposits of australia: geological setting, exploration, and resources, geoscience Australia, Canberra, Australia

    Google Scholar 

  • Hodgson JT, Darnton A (2010) Mesothelioma risk from chrysotile. Occup Environ Med 67(6):432–432

    Google Scholar 

  • Hoshino M, Sanematsu K, Watanabe Y (2016) REE mineralogy and resources. Handbook Phys Chem Rare Earths 49:129–291

    Google Scholar 

  • IARC (International Agency for Research on Cancer) (2012) Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite. IARC Monogr Eval Carcinog Risks Hum 100C:219–309

    Google Scholar 

  • International Ban Asbestos Secretariat (2022). http://www.ibasecretariat.org/alpha_ban_list.php. Accessed online July 14, 2022

  • Jaskula BW (2019) Lithium. In: mineral commodity summaries, Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2019-lithi.pdf. Accessed 18 October 2022

  • Jowitt SM, Weng Z, Mudd G (2013) Rare earth elements: deposits, uncertainities and wasted opportunities. Mater World 21(6):22–24

    Google Scholar 

  • Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev 48:55–69

    Google Scholar 

  • Keith KS, Murray HH (2001) Sorbent clay minerals and their environmental applications. In: White T, Sun D (eds), Symposium Proceedings, Vol.1, ICMAT 2001, 165–171

    Google Scholar 

  • King HE, Plümper O, Putnis A (2010) Effect of secondary phase formation on the carbonation of olivine. Env Sci Tech 44(16):6503–6509

    Google Scholar 

  • Kingery DW, Vandiver PB, Prickett M (1988) The beginnings of pyrotechnology, part II: production and use of lime and gypsum plaster in the Pre-Pottery Neolithic Near East. J Field Arch 15(2):219–243

    Google Scholar 

  • Konta J (1995) Clay and man: clay raw materials in the service of man. App Clay Sci 10(4):275–335

    Google Scholar 

  • Koohsaryan E, Anbia M, Maghsoodlu M (2020) Application of zeolites as non-phosphate detergent builders: A review. J Environ Chem Eng 8(5):104287

    Google Scholar 

  • Koukouzas N, Christopoulou M, Giannakopoulou PP, Rogkala A, Gianni E, Karkalis C, Pyrgaki K, Krassakis P, Koutsovitis P, Panagiotaras D, Petrounias P (2022) Current CO2 capture and storage trends in Europe in a view of social knowledge and acceptance. A short review. Energies 15(5716):1–30

    Google Scholar 

  • Kumar S, Srivastava R, Koh J (2020) Utilization of zeolites as CO2 capturing agents: advances and future perspectives. J CO2 Utilization 41:101251

    Google Scholar 

  • Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2, and climate. Ann Rev Earth Planet Sci 28:611–667

    Google Scholar 

  • Kumari N, Mohan C (2021) Basics of clay minerals and their characteristic properties. Clays Clay Min 24:1–29

    Google Scholar 

  • LaDou J, Castleman B, Frank A, Gochfeld M, Greenberg M, Huff J, Joshi TK, Landrigan PJ, Lemen R, Myers J, Soffritti M, Soskolne CL, Takahashi K, Teitelbaum D, Terracini B, Watterson A (2010) The case for a global ban on asbestos. Environ Health Perspect 118:897–901

    Google Scholar 

  • Lee Y, Vogt T, Hriljac JA, Parise JB, Hanson JC Kim S J (2002) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature 420(6915):485–489

    Google Scholar 

  • Li H, Eksteen J, Kuang G (2019) Recovery of lithium from mineral resources: State-of-the-art and perspectives–a review. Hydrometallurgy 189:105129

    Google Scholar 

  • Li Y, Li L, Yu J (2017) Applications of zeolites in sustainable chemistry. Chem 3(6):928–949

    Google Scholar 

  • McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res 111:B12201

    Google Scholar 

  • Malferrari D, Di Giuseppe D, Scognamiglio V, Gualtieri AF (2012) Commercial brucite, a worldwide used raw material deemed safe, can be contaminated by asbestos. Per Min 90(3):317–324

    Google Scholar 

  • Marfunin AS (1994) Advanced mineralogy Volume 1 composition, structure, and properties of mineral matter Berlin, Heidelberg, and New York (Springer)

    Google Scholar 

  • Masters AF, Maschmeyer T (2011) Zeolites-from curiosity to cornerstone. Microporous Mesoporous Mater 142(2–3):423–438

    Google Scholar 

  • Matson GC (1905) Peridotite Dikes near Ithaca. NY. J Geol 13(3):264–275

    Google Scholar 

  • Matter JM, Broecker WS, Gislason SR, Gunnlaugsson E, Oelkers EH, Stute M, Sigurdardóttir H, Stefansson A, Alfreðsson HA, Aradóttir ES, Axelsson G, Sigfússon B, Wolff-Boenisch D (2011) The CarbFix Pilot Project–storing carbon dioxide in basalt. Energy Procedia 4:5579–5585

    Google Scholar 

  • Meier WM (1968) Zeolite structures. Molecular Sieves. Society of Chemical Industry, London, pp 10–27

    Google Scholar 

  • Melcher F, Sitnikova MA, Graupner T, Martin N, Oberthür T, Henjes-Kunst F, Gäbler E, Gerdes A, Brätz H, Davis DW, Dewaele S (2008) Fingerprinting of conflict minerals: columbite-tantalite (“coltan”) ores. Sga News 23(1):7–14

    Google Scholar 

  • Millini R, Belussi G (2017) Zeolite science and perpectives. In: Cějka J, Morris R, Nachtigall P (eds) Zeolites in catalysis: properties and applications RSC catalysis series, 28. The Royal Society of Chemistry, Cryondon, pp 1–36

    Google Scholar 

  • Mintova S, Grand J, Valtchev V (2016) Nanosized zeolites: quo vadis? C R Chim 19(1–2):183–191

    Google Scholar 

  • Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144(1–3):15–18

    Google Scholar 

  • Morante-Carballo F, Montalván-Burbano N, Carrión-Mero P, Jácome-Francis K (2021) Worldwide research analysis on natural zeolites as environmental remediation materials. Sustainability 13(11):6378

    Google Scholar 

  • Morgado A, Lozano JA, Sanjuán LG, Triviño ML, Odriozola CP, Irisarri DL, Flores ÁF (2016) The allure of rock crystal in Copper Age southern Iberia: technical skill and distinguished objects from Valencina de la Concepción (Seville, Spain). Quat Int 424:232–249

    Google Scholar 

  • Mumpton FA (1999) La roca magica: uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci 96(7):3463–3470

    Google Scholar 

  • Mumpton FA (1978) Natural zeolites: a new industrial mineral commodity. In: Sand LB, Mumpton FA (eds) Natural Zeolites—Occurrence. Properties, Use, Pergamon, Oxford, pp 3–27

    Google Scholar 

  • Murray HH (2006) Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays. Elsevier, p 179

    Google Scholar 

  • Navrotsky A, Trofymluk O, Levchenko AA (2009) Thermochemistry of microporous and mesoporous materials. Chem Rev 109(9):3885

    Google Scholar 

  • Oelkers EH, Gislason SR, Matter J (2008) Mineral carbonation of CO2. Elements 4(5):333–337

    Google Scholar 

  • Oschatz M, Antonietti M (2018) A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ Sci 11(1):57–70

    Google Scholar 

  • Pavelic K, Subotic B, Colic M (2001) Biomedical applications of zeolites. In: Galarneau A, Di Renzo F, Fajula F, Vedrine J (eds) Zeolites and mesoporous materials at the dawn of the 21st Century. Stud Surf Sci Catal, 135

    Google Scholar 

  • Pophale R, Cheeseman PA, Deem MW (2011) A database of new zeolite-like materials. Phys Chem Chem Phys 13(27):12407–12412

    Google Scholar 

  • Pérez-Ramìrez J, Christensen CH, Eglebad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37(11):2530–2542

    Google Scholar 

  • Power IM, Dipple GM, Francis PS (2017) Assessing the carbon sequestration potential of magnesium oxychloride cement building materials. Cem Concr Composites 78:97–107

    Google Scholar 

  • Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43(9):2419–2430

    Google Scholar 

  • Rehder JE (2000) Mastery and uses of fire in antiquity. McGill-Queen’s Press-MQUP

    Google Scholar 

  • Reichl C, Schatz M (2022) World mining data 2022, federal ministry of agriculture, Regions and Tourism, Vienna. https://www.world-mining-datainfo/

  • Ridge MJ (1958) Effect of temperature on the structure of set gypsum plaster. Nature 182(4644):1224–1225

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust, in Treatise on geochemistry, (ed. Holland HD, Turekian KK). Oxford, Elsevier Pergamon 3:1–64

    Google Scholar 

  • Saldi GD, Jordan G, Schott J, Oelkers EH (2009) Geochim Cosmochim Acta 73:5646–5657

    Google Scholar 

  • Saldi GD, Schott J, Pokrovsky OS, Oelkers EH (2012) Geochim Cosmochim Acta 83:93–109

    Google Scholar 

  • Santoro M, Gorelli FA, Bini R, Haines J, van der Lee A (2013) High-pressure synthesis of a Polyethylene/Zeolite nano-composite material. Nat Commun 4(1):1557

    Google Scholar 

  • Schoonover MW, Cohn MJ (2000) New materials discovery for industrial applications. Top Catal 13(4):367–372

    Google Scholar 

  • Scott A, Oze C, Shah V, Yang N, Shanks B, Cheeseman C, Marshall A, Watson M (2021) Transformation of abundant magnesium silicate minerals for enhanced CO2 sequestration. Comm Earth Envi 2(1):1–6

    Google Scholar 

  • Seligmann P, Greening NR (1964) Studies of early hydration reactions of Portland cement by X-ray diffraction. Portland Cement Association, Research and Development Laboratories

    Google Scholar 

  • Simandl GJ (2014) Geology and market-dependent significance of rare earth element resources. Mineralium Dep 49(8):889–904

    Google Scholar 

  • Sigfússon B, Arnarson MÞ, Snæbjörnsdóttir SÓ, Karlsdóttir MR, Aradóttir ES, Gunnarsson I (2018) Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014–2017 and the role of CarbFix in achieving the 2040 Iceland climate goals. Energy Procedia 146:135–145

    Google Scholar 

  • Smith JV (1998) Biochemical evolution I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc Natl Acad Sci 95(7):3370–3375

    Google Scholar 

  • Smith JV, Bennett JM, Flanigen EM (1967) Dehydrated Lanthanum-exchanged Type Y Zeolite. Nature 215(5098):241–244

    Google Scholar 

  • Snæbjörnsdóttir SÓ, Sigfússon B, Marieni C, Goldberg D, Gislason SR, Oelkers EH (2020) Carbon dioxide storage through mineral carbonation. Nat Rev Earth Env 1(2):90–102

    Google Scholar 

  • Snæbjörnsdóttir SÓ (2022) Keynote–Carbfix: CO2 mineral storage in basaltic rocks. The impacts of volcanism on sedimentary basins and their energy resources. The impacts of volcanism on sedimentary basins and their energy resources, 8–9 September 2022. The Geological Society, Burlington House, Piccadilly London

    Google Scholar 

  • Środoń J, Eberl DD (1984) Illite. Rev Mineral Geochem 13(1):495–544

    Google Scholar 

  • Stayner LT, Dankovic DA, Lemen RA (1996) Occupational exposure to chrysotile asbestos and cancer risk: a review of the amphibole hypothesis. Am J Public Health 86(2):179–186

    Google Scholar 

  • Stoops G, Canti MG, Kapur S (2017) Calcareous mortars, plasters and floors. Arch Soil Sed Micromorphol, 189–199

    Google Scholar 

  • Sutherland E (2011) Coltan, the Congo and your cell phone. Available at SSRN 1752822

    Google Scholar 

  • Singh NB, Middendorf B (2007) Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog Crystal Growth Char Mater 53(1):57–77

    Google Scholar 

  • Tadesse B, Makuei F, Albijanic B, Dyer L (2019) The beneficiation of lithium minerals from hard rock ores: a review. Miner Eng 131:170–184

    Google Scholar 

  • Tarantino SC, Zema M, Boffa Ballaran T (2010) crystal structure of columbite under high pressure. Phys Chem Minerals 37(10):769–778

    Google Scholar 

  • Tchernev DI (2001) Natural zeolites in solar energy heating, cooling, and energy storage. Rev Mineral Geochem 45:589–617

    Google Scholar 

  • U.S. Geological Survey (2016) A World of Minerals in Your Mobile Device. https://doi.org/10.3133/gip167 and (2017) https://www.usgs.gov/media/images/minerals-mobile-devices-infographic. Accessed 31 January 2023

  • U.S. Geological Survey (2022) Rare Earths. Mineral Commodity Summaries, January 2022

    Google Scholar 

  • van Koningsveld H (2007) Compendium of zeolite framework types: building schemes and type characteristics. Elsevier, Amsterdam

    Google Scholar 

  • van Reeuwijk LP (1974) The thermal dehydration of natural zeolites. Wageningen Univ Res 74:1–88

    Google Scholar 

  • Verbeck G (1958) Carbonation of hydrated Portland cement. West Conshohocken, PA, USA: ASTM International, 17–36

    Google Scholar 

  • Villa CC, Valencia GA, Córdoba AL, Ortega-Toro R, Ahmed S, Gutiérrez TJ (2022) Zeolites for food applications: a review. Food Biosci 46:101577

    Google Scholar 

  • Weng ZH, Jowitt SM, Mudd GM, Haque N (2013) Assessing rare earth element mineral deposit types and links to environmental impacts. App Earth Sci 122(2):83–96

    Google Scholar 

  • Zarandi A, Larachi F, Beaudoin G, Plante B, Sciortino M (2017) Nesquehonite as a carbon sink in ambient mineral carbonation of ultramafic mining wastes. Chem Eng J 314:160–168

    Google Scholar 

  • Zhang Y, Cao B, Yin H, Meng L, Jin W, Wang F, Xu J, Al-Tabbaa A (2022) Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review. Chemosphere, 136290

    Google Scholar 

  • Zheng H, Bailey SW (1994) Refinement of the nacrite structure. Clays Clay Min 42(1):46–52

    Google Scholar 

  • Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. App Clay Sci 74:3–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cruciani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruciani, G., Gualtieri, A.F. (2023). Mineral Discoveries that Changed Everyday Life. In: Bindi, L., Cruciani, G. (eds) Celebrating the International Year of Mineralogy. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-031-28805-0_12

Download citation

Publish with us

Policies and ethics