Skip to main content

Plant-Derived Drugs for Alzheimer’s Disease and Other Neurological Disorders

  • Chapter
  • First Online:
Bioprospecting of Tropical Medicinal Plants

Abstract

Alzheimer’s disease (AD) is a progressive, debilitating neurological disorder associated with chronic damage to neuronal cells that result in the disruption of the function and structure of the nervous system. AD is irreversible and frequently associated with an elderly population with long pre-symptomatic conditions and late onset. Common symptoms include dementia, cognitive declination, and behavioral imperfections, which ultimately create turbulences in routine life activities that lead to delusion and death. Increasing global occurrence, prevalence, and mortality have a huge socio-economic burden on society and healthcare systems. Established drugs for AD are mostly used to counterbalance the clinical symptoms and are associated with limited efficacy and huge side effects. This demands new drug discovery for Alzheimer’s disease. For ages, a variety of plant-based remedies have been used to enhance memory and cognitive abilities. Several medicinal plants and their phytochemicals including secondary metabolites impart peerless value in treating neurodegenerative diseases. This chapter summarizes diverse medicinal plants in terms of their precise activity to inhibit AD and other common brain diseases such as Parkinson’s disease and dementia. Moreover, different secondary metabolites which possess neuron protection and regeneration, anti-inflammatory, antioxidant activities, acetylcholinesterase (AChE) inhibitory activity, and clearance of aggregated protein in the brain are discussed. Also, this chapter serves as a guide for the development of anti-AD therapeutics and further inspiration to explore new phytochemical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322(16):1589–1599. https://doi.org/10.1001/jama.2019.4782

    Article  PubMed  PubMed Central  Google Scholar 

  2. https://www.who.int/news-room/fact-sheets/detail/dementia

  3. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules (Basel, Switzerland) 25(24):5789. https://doi.org/10.3390/molecules25245789

    Article  CAS  PubMed  Google Scholar 

  4. Piau A, Nourhashémi F, Hein C, Caillaud C, Vellas B (2011) Progress in the development of new drugs in Alzheimer;s disease. J Nutr Health Aging 15(1):45–57. https://doi.org/10.1007/s12603-011-0012-x

    Article  CAS  PubMed  Google Scholar 

  5. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804. https://doi.org/10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis 12. https://doi.org/10.1177/1179573520907397

  7. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Mukadam N (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet commission. Lancet (London, England) 396(10248):413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  PubMed  Google Scholar 

  8. (2021) 2021 Alzheimer’s disease facts and figures. Alzheimers Dement 17(3):327–406. https://doi.org/10.1002/alz.12328

  9. GBD 2019 Dementia Forecasting Collaborators (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7(2):e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

    Article  Google Scholar 

  10. Ayaz M, Ullah F, Sadiq A, Kim MO, Ali T (2019) Editorial: natural products-based drugs: potential therapeutics against Alzheimer’s disease and other neurological disorders. Front Pharmacol 10:1417. https://doi.org/10.3389/fphar.2019.01417

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK (2018) Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front Aging Neurosci 10:284. https://doi.org/10.3389/fnagi.2018.00284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet (London, England) 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1

    Article  CAS  PubMed  Google Scholar 

  13. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ (2020) Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 14:3235–3249. https://doi.org/10.2147/DDDT.S257494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shal B, Ding W, Ali H, Kim YS, Khan S (2018) Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol 9:548. https://doi.org/10.3389/fphar.2018.00548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao RV, Descamps O, John V, Bredesen DE (2012) Ayurvedic medicinal plants for Alzheimer’s disease: a review. Alzheimers Res Ther 4(3):22. https://doi.org/10.1186/alzrt125

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A 109(9):3510–3515. https://doi.org/10.1073/pnas.1112209109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dar NJ, Ahmad M (2020) Neurodegenerative diseases and Withania somnifera (L.): an update. J Ethnopharmacol 256:112769. https://doi.org/10.1016/j.jep.2020.112769

    Article  CAS  PubMed  Google Scholar 

  19. Halim MA, Rosli IM, Jaafar SSM, Ooi HM, Leong PW, Shamsuddin S, Najimudin N, Azzam G (2020) Withania somnifera showed neuroprotective effect and increase longevity in Drosophila Alzheimer’s disease model. BioRxiv. https://doi.org/10.1101/2020.04.27.063107

  20. Kurapati KR, Atluri VS, Samikkannu T, Nair MP (2013) Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8(10):e77624. https://doi.org/10.1371/journal.pone.0077624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jayaprakasam B, Padmanabhan K, Nair MG (2010) Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res: PTR 24(6):859–863. https://doi.org/10.1002/ptr.3033

    Article  CAS  PubMed  Google Scholar 

  22. Gregory J, Vengalasetti YV, Bredesen DE, Rao RV (2021) Neuroprotective herbs for the management of Alzheimer’s disease. Biomol Ther 11(4):543. https://doi.org/10.3390/biom11040543

    Article  CAS  Google Scholar 

  23. Singh M, Ramassamy C (2017) In vitro screening of neuroprotective activity of Indian medicinal plant Withania somnifera. J Nutr Sci 6:e54. https://doi.org/10.1017/jns.2017.48

    Article  CAS  PubMed  Google Scholar 

  24. Konar A, Gupta R, Shukla RK, Maloney B, Khanna VK, Wadhwa R, Lahiri DK, Thakur MK (2019) M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep 9(1):13990. https://doi.org/10.1038/s41598-019-48238-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiroma SM, Baharuldin M, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, Mahdi O, Moklas M (2019) Centella asiatica protects d-Galactose/AlCl3 mediated Alzheimer’s disease-like Rats via PP2A/GSK-3β signaling pathway in their Hippocampus. Int J Mol Sci 20(8):1871. https://doi.org/10.3390/ijms20081871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai A, Xiao L, Zhou Y-P, Zhang Z-G, Yang Q-W (2020) Effect of Evodia rutaecarpa (Juss) Benth extract on Alzheimer disease in mice. Trop J Pharm Res 19:823–828. https://doi.org/10.4314/tjpr.v19i4.21

    Article  CAS  Google Scholar 

  27. Soumyanath A, Zhong YP, Henson E, Wadsworth T, Bishop J, Gold BG, Quinn JF (2012) Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. Int J Alzheimers Dis 2012:381974. https://doi.org/10.1155/2012/381974

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, Manyam BV (2009) Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer’s disease animal model. Phytother Res: PTR 23(1):14–19. https://doi.org/10.1002/ptr.2405

    Article  PubMed  Google Scholar 

  29. Centella asiatica (Gotu kola): cognitive vitality. https://www.alzdiscovery.org/cognitive-vitality/ratings/centella-asiatica (Accessed on 15.02.2022)

  30. Hafiz ZZ, Amin M, Johari James RM, Teh LK, Salleh MZ, Adenan MI (2020) Inhibitory effects of raw-extract centella asiatica (RECA) on acetylcholinesterase, inflammations, and oxidative stress activities via in vitro and in vivo. Molecules (Basel, Switzerland) 25(4):892. https://doi.org/10.3390/molecules25040892

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Dogra S, Prakash A (2009) Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimers Dis 2009:972178. https://doi.org/10.4061/2009/972178

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen CL, Tsai WH, Chen CJ, Pan TM (2015) Centella asiatica extract protects against amyloid β1-40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J Tradit Complement Med 6(4):362–369. https://doi.org/10.1016/j.jtcme.2015.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fang Z, Tang Y, Ying J, Tang C, Wang Q (2020) Traditional Chinese medicine for anti-Alzheimer’s disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 15:82. https://doi.org/10.1186/s13020-020-00359-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cooper EL, Ma MJ (2017) Alzheimer disease: clues from traditional and complementary medicine. J Tradit Complement Med 7(4):380–385. https://doi.org/10.1016/j.jtcme.2016.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Park CH, Kim SH, Choi W, Lee YJ, Kim JS, Kang SS, Suh YH (1996) Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med 62(5):405–409. https://doi.org/10.1055/s-2006-957926

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Wang J, Wang C, Li Z, Liu X, Zhang J, Lu J, Wang D (2018) Pharmacological basis for the use of evodiamine in Alzheimer’s disease: antioxidation and antiapoptosis. Int J Mol Sci 19(5):1527. https://doi.org/10.3390/ijms19051527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Russo A, Formisano C, Rigano D, Senatore F, Delfine S, Cardile V, Rosselli S, Bruno M (2013) Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol 55:42–47. https://doi.org/10.1016/j.fct.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Shao Y, Li J, Zhu N, Rangarajan M, LaVoie EJ, Ho CT (1999) Antioxidative phenolic glycosides from sage (Salvia officinalis). J Nat Prod 62(3):454–456. https://doi.org/10.1021/np980436g

    Article  CAS  PubMed  Google Scholar 

  39. Veličković DT, Ranđelović NV, Ristić MS, Veličković AS, Šmelcerović AA (2003) Chemical constituents and antimicrobial activity of the ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L. J Serb Chem Soc 68(1):17–24. https://doi.org/10.2298/JSC0301017V

    Article  Google Scholar 

  40. Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 7(4):433–440. https://doi.org/10.1016/j.jtcme.2016.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  41. Capek P, Hríbalová V (2004) Water-soluble polysaccharides from Salvia officinalis L. possessing immunomodulatory activity. Phytochemistry 65(13):1983–1992. https://doi.org/10.1016/j.phytochem.2004.05.020

    Article  CAS  PubMed  Google Scholar 

  42. Hayouni E, Chraief I, Abedrabba M, Bouix M, Leveau JY, Mohammed H, Hamdi M (2008) Tunisian Salvia officinalis L. and Schinus molle L. essential oils: their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int J Food Microbiol 125(3):242–251. https://doi.org/10.1016/j.ijfoodmicro.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  43. Mitić-Ćulafić D, Vuković-Gačić BS, Knežević-Vukčević JB, Stanković S, Simić DM (2005) Comparative study on the antibacterial activity of volatiles from sage (Salvia officinalis L.). Arch Biol Sci 57(3):173–178. https://doi.org/10.2298/ABS0503173M

    Article  Google Scholar 

  44. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M (2003) Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 28(1):53–59. https://doi.org/10.1046/j.1365-2710.2003.00463.x

    Article  CAS  PubMed  Google Scholar 

  45. Eidi M, Eidi A, Bahar M (2006) Effects of Salvia officinalis L (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition (Burbank, Los Angeles County, Calif.) 22(3):321–326. https://doi.org/10.1016/j.nut.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  46. El Euch SK, Hassine DB, Cazaux S, Bouzouita N, Bouajila J (2019) Salvia officinalis essential oil: chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. S Afr J Bot 120:253–260. https://doi.org/10.1016/j.sajb.2018.07.010

    Article  CAS  Google Scholar 

  47. Hasanein P, Felehgari Z, Emamjomeh A (2016) Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: possible hypoglycaemic and antioxidant mechanisms. Neurosci Lett 622:72–77. https://doi.org/10.1016/j.neulet.2016.04.045

    Article  CAS  PubMed  Google Scholar 

  48. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67(1):27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x

    Article  CAS  PubMed  Google Scholar 

  49. Chung YK, Heo HJ, Kim EK, Kim HK, Huh TL, Lim Y, Kim SK, Shin DH (2001) Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase. Mol Cells 11(2):137–143. PMID: 11355692

    Article  PubMed  Google Scholar 

  50. Lin HQ, Ho MT, Lau LS, Wong KK, Shaw PC, Wan DC (2008) Anti-acetylcholinesterase activities of traditional Chinese medicine for treating Alzheimer’s disease. Chem Biol Interact 175(1–3):352–354. https://doi.org/10.1016/j.cbi.2008.05.030

    Article  CAS  PubMed  Google Scholar 

  51. Wu TY, Chen CP, Jinn TR (2011) Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obstet Gynecol 50(2):131–135. https://doi.org/10.1016/j.tjog.2011.04.004

    Article  PubMed  Google Scholar 

  52. Jiang B, Shen RF, Bi J, Tian XS, Hinchliffe T, Xia Y (2015) Catalpol: a potential therapeutic for neurodegenerative diseases. Curr Med Chem 22(10):1278–1291. https://doi.org/10.2174/0929867322666150114151720

    Article  CAS  PubMed  Google Scholar 

  53. Choi K, Kim J, Kim GW, Choi C (2009) Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species. Curr Neurovasc Res 6(4):213–222. https://doi.org/10.2174/156720209789630375

    Article  CAS  PubMed  Google Scholar 

  54. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med Cell Longev 2017:2525967. https://doi.org/10.1155/2017/2525967

    Article  CAS  Google Scholar 

  55. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:37. https://doi.org/10.1155/2012/872875

    Article  CAS  Google Scholar 

  56. Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287(2):C246–C256. https://doi.org/10.1152/ajpcell.00516.2003

    Article  CAS  PubMed  Google Scholar 

  57. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. https://doi.org/10.1016/j.it.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  58. Cacabelos R, Torrellas C, Carrera I, Cacabelos P, Corzo L, Fernández-Novoa L, Tellado I, Carril JC, Aliev G (2016) Novel therapeutic strategies for dementia. CNS Neurol Disord Drug Targets 15(2):141–241. https://doi.org/10.2174/1871527315666160202121548

    Article  CAS  PubMed  Google Scholar 

  59. Yang C, Shi Z, You L, Du Y, Ni J, Yan D (2020) Neuroprotective effect of catalpol via anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. Front Pharmacol 11:690. https://doi.org/10.3389/fphar.2020.00690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Teoh ES (2016) Galeola to gymadenia. In: Medicinal orchids of Asia. Springer, Cham, pp 375–440. https://doi.org/10.1007/978-3-319-24274-3

    Chapter  Google Scholar 

  61. Jang JH, Son Y, Kang SS, Bae CS, Kim JC, Kim SH, Shin T, Moon C (2015) Neuropharmacological potential of Gastrodia elata Blume and its components. Evid Based Complement Alternat Med 2015:309261. https://doi.org/10.1155/2015/309261

    Article  PubMed  PubMed Central  Google Scholar 

  62. Han YJ, Je JH, Kim SH, Ahn SM, Kim HN, Kim YR, Choi YW, Shin HK, Choi BT (2014) Gastrodia elata shows neuroprotective effects via activation of PI3K signaling against oxidative glutamate toxicity in HT22 cells. Am J Chin Med 42(4):1007–1019. https://doi.org/10.1142/S0192415X14500633

    Article  PubMed  Google Scholar 

  63. Azam F (2010) Therapeutic potential of free radical scavengers in neurological disorders. Handbook of free radicals: formation, types and effects. Nova Publishers, New York, pp 57–97

    Google Scholar 

  64. Dorri M, Hashemitabar S, Hosseinzadeh H (2018) Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 41(3):338–351. https://doi.org/10.1080/01480545.2017.1417995

    Article  CAS  PubMed  Google Scholar 

  65. Liu S, Yang L, Zheng S, Hou A, Man W, Zhang J, Wang S, Wang X, Yu H, Jiang H (2021) A review: the botany, ethnopharmacology, phytochemistry, pharmacology of Cinnamomi cortex. RSC Adv 11(44):27461–27497. https://doi.org/10.1039/D1RA04965H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deshpande P, Gogia N, Singh A (2019) Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen Res 14(8):1321–1329. https://doi.org/10.4103/1673-5374.253509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Panickar KS, Polansky MM, Graves DJ, Urban JF Jr, Anderson RA (2012) A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemia-like injury in vitro. Neuroscience 202:87–98. https://doi.org/10.1016/j.neuroscience.2011.11.051

    Article  CAS  PubMed  Google Scholar 

  68. Modi KK, Jana M, Mondal S, Pahan K (2015) Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes. Neurochem Res 40(11):2333–2347. https://doi.org/10.1007/s11064-015-1723-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sumithra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumithra, B., Mandal, S.K., Mishra, B., Mounika, K.V.S.S.N., Caleb Joel Raj, J., Aishwarya, C.V.S. (2023). Plant-Derived Drugs for Alzheimer’s Disease and Other Neurological Disorders. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-28780-0_55

Download citation

Publish with us

Policies and ethics