Skip to main content

Therapeutic Properties of Nardostachys jatamansi and Its Applications in Post-Chemotherapy-Induced Hair Loss in Cancer Patients

  • Chapter
  • First Online:
Bioprospecting of Tropical Medicinal Plants

Abstract

Chemotherapy-induced alopecia (CIA) is probably one of the most shocking and psychologically disturbing side effects for oncological patients. Hair loss occurs because chemotherapy targets all rapidly dividing cells, healthy cells, and cancer cells. Chemotherapy may cause hair loss all over the human body, not just on the scalp. Hair follicles, the structures in the skin filled with tiny blood vessels that make hair, are some of the fastest-growing cells in the body. Hair follicles divide every 23–72 hours. The chemo not only works against cancer cells but it also destroys hair cells. To the best of our knowledge, no guidelines are available about CIA management. The present review may provide evidence that the plant extract is highly effective in hair growth stimulating activity with high anti-hair fall properties, which can be used as a hair-promoting agent for post-chemotherapy alopecia. Investigation on the therapeutic properties of Nardostachys jatamansi as a potential hair growth promoter will provide the scientific basis for developing nutraceuticals to manage chemotherapy-induced alopecia (CIA)––hair falls for cancer patients. This study may be a scientific tool for understanding the complete therapeutic and nutritional properties of Nardostachys jatamansi for developing natural compounds for CIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. JAMA Oncol (2017) 3(8):1147. https://doi.org/10.1001/jamaoncol.2017.1026

  2. JAMA Oncol (2021) 7(7):1080. https://doi.org/10.1001/jamaoncol.2021.0896

  3. Dunnill CJ, Al-Tameemi W, Collett A, Haslam IS, Georgopoulos NT (2018) A clinical and biological guide for understanding chemotherapy-induced alopecia and its prevention. Oncologist 23:84–96

    Article  PubMed  Google Scholar 

  4. Sahu R, Dhongade HJ, Pandey A, Sahu P, Sahu V, Patel D, Kashyap P (2016) Medicinal Properties of Nardostachys jatamansi (A Review). Orient J Chem 32:32(2)

    Article  Google Scholar 

  5. Chatterjee B, Basak U, Datta J, Banerji A, Neuman TP (2005) Studies on the Chemical Constituents of N. jatamansi DC [Valerianaceae]. Cheminform 36:17

    Article  Google Scholar 

  6. Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle is a dynamic miniorgan. Curr Biol 19:R132–R142

    Article  CAS  PubMed  Google Scholar 

  7. Hendrix S, Handjiski B, Peters EM, Paus RJ (2005) Invest Dermatol 125(1):42–51

    Article  CAS  Google Scholar 

  8. Hendrix S, Handjiski B, Peters EM, Paus R (2005) A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol 125:42–51

    Article  CAS  PubMed  Google Scholar 

  9. Paus R, Haslam IS, Sharov AA, Botchkarev VA (2013) Pathobiology of chemotherapy-induced hair loss. Lancet Oncol 14:e50–e59

    Article  CAS  PubMed  Google Scholar 

  10. Botchkarev VA (2003) Molecular mechanisms of chemotherapy-induced hair loss. J Investing Dermatol Symp Proc 8(1):72–75. https://doi.org/10.1046/j.1523-1747.2003.12175.x

    Article  CAS  Google Scholar 

  11. Mill P, Mo R, Fu H et al (2003) Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17:282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell. 8:552–565

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bleiker TO, Nicolaou N, Traulsen J, Hutchinson PE (2005) ‘Atrophic telogen effluvium’ from cytotoxic drugs and a randomized controlled trial to investigate the possible protective effect of pretreatment with a topical vitamin D analogue in humans. Br J Dermatol 153:103–112

    Article  CAS  PubMed  Google Scholar 

  14. Pirmez R, Pineiro-Maceira J, Sodre CT (2013) Exclamation marks and other trichoscopy signs of chemotherapy-induced alopecia. Australas J Dermatol 54:129–132

    Article  PubMed  Google Scholar 

  15. Kowalska-Olędzka E, Slowinska M, Rakowska A et al (2012) ‘Black dots’ seen under trichoscopy are not specific for alopecia areata. Clin Exp Dermatol 37:615–619

    Article  PubMed  Google Scholar 

  16. Rossi A, Caterina Fortuna M, Caro G et al (2018) Monitoring chemotherapy-induced alopecia with trichoscopy [published online ahead of print July 11, 2018]. J Cosmet Dermatol 18:575. https://doi.org/10.1111/jocd.12687

    Article  PubMed  Google Scholar 

  17. Miteva M, Tosti A (2015) Flame hair. Skin Appendage Disord 1:105–109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cheng H, Hong B, Zhou L et al (2012) Mitomycin C potentiates TRAIL-induced apoptosis through p53-independent upregulation of death receptors: evidence for the role of c-Jun N-terminal kinase activation. Cell Cycle 11:3312–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haslam I, Xie G, Zhou G et al (2015) Shh signaling regulates the damage response of murine and human hair follicles in chemotherapy-induced alopecia. J Invest Dermatol 135:S7

    Google Scholar 

  20. Adapted alf Paus, Haslam IS, Sharov AA, Botchkarev VA (2013) Pathobiology of chemotherapy-induced hair loss. The Lancet Oncology 14(2):e50–e59

    Article  Google Scholar 

  21. Hughes BT, Sidorova J, Swanger J, Monnat RJ Jr, Clurman BE (2013) Proc Natl Acad Sci U S A 110(22):8954–8959. https://doi.org/10.1073/pnas.1302927110. Epub 2013 May 13

    Article  PubMed  PubMed Central  Google Scholar 

  22. Trueb RM (2009) Chemotherapy-induced alopecia. Semin Cutan Med Surg 28:11–14

    Article  CAS  PubMed  Google Scholar 

  23. Jimenez JJ, Yunis AA (1992) Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res 52:5123–5125

    CAS  PubMed  Google Scholar 

  24. Hidalgo M, Rinaldi D, Medina G et al (1999) A phase I trial of topical topitriol (calcitriol, 1,25-dihydroxyvitamin D3) to prevent chemotherapy-induced alopecia. Anti-Cancer Drugs 10:393–395

    Article  CAS  PubMed  Google Scholar 

  25. Bleiker TO, Nicolaou N, Traulsen J et al (2005) ‘Atrophic telogen effluvium’ from cytotoxic drugs and a randomized controlled trial to investigate the possible protective effect of pretreatment with a topical vitamin D analogue in humans. Br J Dermatol 153:103–112

    Article  PubMed  Google Scholar 

  26. Lotfi-Jam K, Carey M, Jefford M, Schofield P, Charleson C, Aranda S (2008) Nonpharmacologic strategies for managing common chemotherapy adverse effects: a systematic review. J Clin Oncol 26:5618–5629

    Article  PubMed  Google Scholar 

  27. Cline BW (1984) Prevention of chemotherapy-induced alopecia: a review of the literature. Cancer Nurs 7:221–228

    Article  CAS  PubMed  Google Scholar 

  28. Hussein AM, Jimenez JJ, McCall CA, Yunis AA (1990) Science. 249(4976):1564–1546. https://doi.org/10.1126/science.2218498. PMID: 2218498

  29. Hussein AM (1995) Int J Dermatol. 34(7):470–3. https://doi.org/10.1111/j.1365-4362.1995.tb00612.x. PMID: 7591409

  30. Hussein AM (1993) South Med J. 86(5):489–96. https://doi.org/10.1097/00007611-199305000-00001.PMID: 8488392

  31. Imanishi H, Tsuruta D, Tateishi C, Sugawara K, Paus R, Tsuji T et al (2010) Laminin-511, inducer of hair growth, is down-regulated and its suppressor in hair growth, laminin-332 up-regulated in chemotherapy-induced alopecia. J Dermatol Sci 58:43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. You J, Gao F, Tang H, Peng F, Jia L, Huang K, Chow K, Zhao J, Liu H, Lin Y, Chen J (2019) A medicinal and edible formula YH0618 ameliorates the toxicity induced by doxorubicin via regulating the expression of Bax/Bcl-2 and FOXO4. J Cancer 10(16):3665–3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. You JS et al (2016) Effect of YH0618 soup on chemotherapy-induced toxicity in patients with cancer who have completed chemotherapy: study protocol for a randomized controlled trial. Trials 17(1):354

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chan YC et al (2009) Nanonized black soybean enhances immune response in senescence-accelerated mice. Int J Nanomedicine 4:27–35

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yim JH et al (2009) Antinociceptive and anti-inflammatory effects of ethanolic extracts of Glycine max (L.) Merr and Rhynchosia nulubilis seeds. Int J Mol Sci 10(11):4742–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kusano S, Abe H, Tamura H (2001) Isolation of antidiabetic components from white-skinned sweet potato (Ipomoea batatas L.). Biosci Biotechnol Biochem 65(1):109–114

    Article  CAS  PubMed  Google Scholar 

  37. Macduff C, Mackenzie T, Hutcheon A et al (2003) The effectiveness of scalp cooling in preventing alopecia for patients receiving epirubicin and docetaxel. Eur J Cancer Care 12:154–161

    Article  CAS  Google Scholar 

  38. Mols F, Van Den Hurk CJ, Vingerhoets AJJM et al (2009) Scalp cooling to prevent chemotherapy-induced hair loss: practical and clinical considerations. Support Care Cancer 17:181–189

    Article  PubMed  Google Scholar 

  39. Kennedy M, Packard R, Grant M et al (1983) The effects of using chemocap on occurrence of chemotherapy-induced alopecia. Oncol Nurs Forum 10:19–24

    CAS  PubMed  Google Scholar 

  40. Lovejoy NC (1979) Preventing hair loss during adriamycin therapy. Cancer Nurs 2:117–121

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez R, Machiavelli M, Leone B et al (1994) Minoxidil (mx) as a prophylaxis of doxorubicin-induced alopecia. Ann Oncol 5:769–770

    Article  CAS  PubMed  Google Scholar 

  42. Granai CO, Frederickson H, Gajewski W et al (1991) The use of minoxidil to attempt to prevent alopecia during chemotherapy for gynecologic malignancies. Eur J Gynaecol Oncol 12:129–132

    CAS  PubMed  Google Scholar 

  43. Villani C, Inghirami P, Pietrangeli D (1986) Prevention by hypothermic cap of antiblastic induced-alopecia. Eur J Gynaecol Oncol 7:15–17

    CAS  PubMed  Google Scholar 

  44. Edelstyn GA, MacDonald M, MacRae KD (1977) Doxorubicin-induced hair loss and possible modification by scalp cooling. Lancet 2:253–254

    Article  CAS  PubMed  Google Scholar 

  45. Peck HJ, Mitchell H, Stewart AL (2000) Evaluating the efficacy of scalp cooling using the penguin cold cap system to reduce alopecia in patients undergoing chemotherapy for breast cancer. Eur J Oncol Nurs 4:246–248

    Article  CAS  PubMed  Google Scholar 

  46. Jadhav VM, Throat RM, Kadam VJ, Kamble SS (2009) Herbal Anxiolyte, Nardostachs jatamansi. J Pharm Res 2(8):1208–1211

    Google Scholar 

  47. Yeap SK, Rahman MBA, Alitheen NB, Ho WY et al (2011) Evaluation of immunomodulatory effect, selection of the correct targets for Immunostimulation study. Am J Immunol 7(2):17–23

    Article  CAS  Google Scholar 

  48. Inui S, Nakajima T, Itami S (2010) Coudability hairs: a revisited sign of alopecia areata assessed by trichoscopy. Clin Exp Dermatol 35(4):361–365

    Article  CAS  PubMed  Google Scholar 

  49. Peralta L, Morais P (2012) Photoletter to the editor: the friar tuck sign in trichotillomania. J Dermatol Case Rep 6(2):63–64

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu MY, Li J. (2021) CMAJ. 193(4):E126. https://doi.org/10.1503/cmaj.200894

  51. Grevelman EG, Breed WP (2005) Prevention of chemotherapy-induced hair loss by scalp cooling. Ann Oncol 16:352–358

    Article  CAS  PubMed  Google Scholar 

  52. Al-Tameemi W, Dunnill C, Hussain O et al (2014) Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity. Toxicol In Vitro 28:1366–1376

    Article  CAS  PubMed  Google Scholar 

  53. McGarvey EL, Baum LD, Pinkerton RC, Rogers LM (2001) Psychological sequelae and alopecia among women with cancer. Cancer Pract 9:283–289

    Article  CAS  PubMed  Google Scholar 

  54. Botchkarev V, Sharov AA, Syska W, Maurer M, Gilchrest BA (2002) Involvement of p53 and Fas in hair follicle apoptosis in human skin/SCID model for chemotherapy-induced hair loss. J Invest Dermatol 119:286

    Google Scholar 

  55. Food and H.H.S. Drug Administration (2016) Medical devices; general and plastic surgery devices; classification of the scalp cooling system to reduce the likelihood of chemotherapy-induced alopecia. Final order. Fed Regist 81(29):7452–7454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Packirisamy Azhagu Saravana Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azhagu Saravana Babu, P., Vajiha Aafrin, B., Goyali, S., Geethika, M., Sugumari, V., Sukumar, M. (2023). Therapeutic Properties of Nardostachys jatamansi and Its Applications in Post-Chemotherapy-Induced Hair Loss in Cancer Patients. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-28780-0_24

Download citation

Publish with us

Policies and ethics