Skip to main content

Comprehensive Review on Wild Basil Genus Orthosiphon of Lamiaceae

  • Chapter
  • First Online:
Bioprospecting of Tropical Medicinal Plants

Abstract

There are millions of plants worldwide, yet most of them have not been investigated for their medicinal properties. The development and recognition of medicinal plants increase at an exponential rate in industrialized and developing nations, resulting in research works on medicinal plants congregating toward therapeutic needs. The remarkable diversity of both chemical structure and biological activities of naturally occurring secondary metabolites, the utility of novel bioactive natural compounds as biochemical probes, the development of novel and sensitive techniques to detect biologically active natural products paved way to improved approaches to isolate, purify, and structurally characterize these bioactive constituents, and advancement in solving the demand for supply of complex natural products.

The main focus of this review is to highlight the potential benefits of the Lamiaceae plant derived from multiple compounds and the importance of phytochemicals for the development of biocompatible therapeutics. In addition, this review focuses on problems encountered in medicinal plant research and discusses future directions. This review suggests that conservation strategies and resource management should be considered for sustainable utilization of medicinal plants. This review also recommends that the medicinal plant research should focus on tap plant components of Orthosiphon and deliver the most beneficial health products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasu K, Goud JV, Suryam A, Singara MA (2009) Biomolecular and phytochemical analyses of three aquatic angiosperms. Afr J Microbiol Res 3(8):418–421

    CAS  Google Scholar 

  2. Akrout EI, Jani H, Zammouri T, Mighri H, Neffati M (2010) Phytochemical screening and mineral contents of annual plants growing wild in the southern of Tunisia. J Phytology 2(1):034–040

    Google Scholar 

  3. Sarker SD (2012) Pharmacognosy in modern pharmacy curricula. Pharmacogn Mag 8(30):91

    Article  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization (1993) Research guidelines for evaluating the safety and efficacy of herbal medicines. WHO Regional Office for the Western Pacific, Manila

    Google Scholar 

  5. World Health Organization (1998) Regulatory situation of herbal medicines. A worldwide review, Geneva, pp 1–5

    Google Scholar 

  6. Galbley S, Thiericke R (1999) Drug discovery from nature, Series: Springer Desktop Editions in Chemistry

    Google Scholar 

  7. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dar JA, Subashree K, Sundarapandian S et al (2019) Invasive species and their impact on tropical forests of Central India: a review. In: Tropical ecosystems: Structure, functions and challenges in the face of global change, pp 69–109

    Google Scholar 

  9. Raju VS, Reddy CS, Suthari S (2010) Flowering plant diversity and endemism in India: an overview. Algae 2(40,000):6–25

    Google Scholar 

  10. Singh R (2015) Medicinal plants: a review. J Plant Sci 3(1):50–55

    Google Scholar 

  11. Rajasekharan PE, Wani SH (2020) Conservation and utilization of threatened medicinal plants. Springer Nature- Science, p 565

    Book  Google Scholar 

  12. Rangari VD (2007) Pharmacognosy & Phytochemistry, 1st edn. Career Publication, Pune, pp 4–7

    Google Scholar 

  13. Okigbo RN, Eme UE, Ogbogu S (2008) Biodiversity and conservation of medicinal and aromatic plants in Africa. Biotechnol Mol Biol Rev 3(6):127–134

    Google Scholar 

  14. Kumar P, Mishra S, Malik A, Satya S (2011) Insecticidal properties of Mentha species: a review. Ind Crop Prod 34(1):802–817

    Article  CAS  Google Scholar 

  15. Lourenco SC, Moldao-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24(22):4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahidol C, Ruchirawat S, Prawat H et al (1998) Biodiversity and natural product drug discovery. Pure Appl Chem 70(11):2065–2072

    Article  CAS  Google Scholar 

  17. Sundarammal S, Thirugnanasampandan R, Selvi MT (2012) Chemical composition analysis and antioxidant activity evaluation of essential oil from Orthosiphon thymiflorus (Roth) Sleesen. Asian Pac J Trop Biomed 2:S112–S115

    Article  Google Scholar 

  18. Mishra LK, Sarkar D, Shetty K (2019) Human health-relevant bioactives and associated functionalities of herbs in the Lamiaceae family. In: Functional Foods and Biotechnology. CRC Press, pp 115–131

    Google Scholar 

  19. Chithra V, Adersh M, Reji SR, Nair GM (2013) Screening biological activities of Orthosiphon aristatus. Int J Adv Res 5:594–600

    Google Scholar 

  20. Heinrich M, Gibbons S (2001) Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J Pharm Pharmacol 53(4):425–432

    Article  CAS  PubMed  Google Scholar 

  21. Ghaffari H, Venkataramana M, Nayaka SC et al (2013) Hepatoprotective action of Orthosiphon diffusus (Benth.) methanol active fraction through antioxidant mechanisms: an in vivo and in vitro evaluation. J Ethnopharmacol 149(3):737–744

    Article  PubMed  Google Scholar 

  22. Adnyana IK, Setiawan F, Insanu M (2013) From ethnopharmacology to clinical study of Orthosiphon stamineus Benth. Studies 1(2)

    Google Scholar 

  23. Okach DO, Nyunja ARO, Opande G (2013) Phytochemical screening of some wild plants from Lamiaceae and their role in traditional medicine in Uriri District-Kenya. Int J Herb Med 1(5):135–143

    Google Scholar 

  24. Nieto G (2017) Biological activities of three essential oils of the Lamiaceae family. Medicines 4(3):63

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masih NG, Singh BS (2012) Phytochemical screening of some plants used in herbal based cosmetic preparations. In: Chemistry of Phytopotentials: health, energy and environmental perspectives. Springer, Berlin, Heidelberg, pp 111–112

    Chapter  Google Scholar 

  26. Garba ABH, Arya MA, Traore A, Ouedraogo S (2017) Etude des effets vermicide et anti-diarrheique du macere aqueux des feuilles de Salvadora persica, L. (Salvadoraceae). Int J Biol Chem 11(1):54–66

    Google Scholar 

  27. Degla LH, Olounlade PA, Amoussa AMO et al (2021) Pharmacological and biochemical aspects of the Lamiaceae Family used in the treatment of intestinal Parasitosis in West and Central Africa. Pharmacogn Rev 15(29):69–75

    Article  CAS  Google Scholar 

  28. Batubara I, Komariah K, Sandrawati A et al (2020) Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Sci Rep 10:20945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ameer OZ, Salman IM, Asmawi MZ, Ibraheem ZO (2012) Orthosiphon stamineus: traditional uses, phytochemistry, pharmacology, and toxicology. Mun Fei Yam J Med Food 15:8678–8690

    Google Scholar 

  30. Maheswari C, Venkatnarayanan R, Manavalan R et al (2015) Phytochemical screening and in vitro free radical scavenging activity of Orthosiphon stamineus and Coccinia grandis. Int Res J Pharm 6:627–630

    Article  CAS  Google Scholar 

  31. Choo BKM, Kundap UP, Kumari Y, Hue SM et al (2018) Orthosiphon stamineus leaf extract affects TNF-and seizures in a zebrafish model. Front Pharmacol 9:139

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu HL, Wan JB, Wang YT et al (2014) Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 55:3–16

    Article  CAS  PubMed  Google Scholar 

  33. Coelho VR, Vieira CG, De Souza LP et al (2015) Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caeic acid in mice. Life Sci 122:65–71

    Article  CAS  PubMed  Google Scholar 

  34. Rabiei Z (2017) Anticonvulsant effects of medicinal plants with emphasis on mechanisms of action. Asian Pac J Trop Biomed 7:166–172

    Article  Google Scholar 

  35. Khoury M, Stein D, Eparvier V et al (2016) Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. eCAM 2016:17

    Google Scholar 

  36. Memar Mohammad Y, Parisa R, Naser A et al (2017) Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol 28(2):63–68

    Article  Google Scholar 

  37. Fizur NMM, Hayate J, Hasan AT et al (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380

    Article  Google Scholar 

  38. Lee KW, Everts H, Kappert HJ et al (2003) Dietary Carvacrol lowers body weight gain but improves feed conversion in female broiler chickens. J Appl Poult Res 12(4):2003

    Article  Google Scholar 

  39. Namata Abba B, Romane A, Ilagouma AT (2020) Antibacterial activity of Endostemon tereticaulis (Poir.) M. Ashby essential oil and ethanolic extract against resistant pathogenic bacteria. Nat Prod Commun 15(9):1–9

    Google Scholar 

  40. Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822

    Article  CAS  PubMed  Google Scholar 

  41. Kanthal LK, Dey A, Satyavathi K, Bhojaraju P (2014) GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharm Res 6(1):58

    Google Scholar 

  42. Pakkirisamy M, Kalakandan SK, Ravichandran K (2017) Phytochemical screening, GC-MS, FT-IR analysis of Methanolic extract of Curcuma caesia Roxb (Black Turmeric). Pharm J 9(6):952–956

    CAS  Google Scholar 

  43. Hajdari A, Mustafa B, Hyseni L et al (2020) Phytochemical study of eight medicinal plants of the lamiaceae family traditionally used as tea in the Sharri Mountains region of the Balkans. Sci World J 2020:9

    Article  Google Scholar 

  44. Asmira AREN, Azlini I, Nor OM et al (2018) GC-MS analysis of phytochemical compounds in Syzygium polyanthum leaves extracted using ultrasound-assisted method. Pharm J 10(1):110–119

    Google Scholar 

  45. Yayli B, Tosun G, Karaköse M et al (2014) SPME/GC-MS analysis of volatile organic compounds from three Lamiaceae species (Nepeta conferta Hedge & Lamond, Origanum onites L. and Satureja cuneifolia Ten.) growing in Turkey. Asian J Chem 26(9):2541

    Google Scholar 

  46. Joshi RK (2020) GC-MS analysis of the volatile constituents of Orthosiphon pallidus Royle, ex Benth. Nat Prod Res 34(3):441–444

    Article  CAS  PubMed  Google Scholar 

  47. Sadashiva CT, Naidoo Y, Naidoo J R, Naidoo G (2013) Chemical composition of the essential oil from the leaves of Endostemon obtusifolius (E.Mey. ex Benth.) N.E.Br. Biochem Pharmacol 2:4

    Google Scholar 

  48. Bayala B, Bassole IHN, Scifo R et al (2014) Anticancer activity of essential oils and their chemical components - a review. Am J Cancer Res 4(6):591–607

    PubMed  PubMed Central  Google Scholar 

  49. Chappell J, Robert M (2010) Coates, 1.16 - Sesquiterpenes. In: (Ben) Liu H-W, Mander L (eds) Comprehensive Natural Products II. Elsevier, pp 609–641

    Chapter  Google Scholar 

  50. Awouafack MD, Tane P, Kuete V, Jacobus N (2013) Eloff, 2 - Sesquiterpenes from the medicinal plants of Africa. In: Kuete V (ed) Medicinal Plant Research in Africa. Elsevier, pp 33–103

    Chapter  Google Scholar 

  51. Cavalieri E, Mariotto S, Fabrizi C et al (2004) Alpha-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun 315:589–594

    Article  CAS  PubMed  Google Scholar 

  52. Lampronti I, Saab AM, Gambari R (2006) Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int J Oncol 29:989–995

    CAS  PubMed  Google Scholar 

  53. Yam MF, Lim V, Salman IM et al (2010) HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules 15:4452–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Akowuah GA, Ismail Z, Norhayati I et al (2005) The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem 93:311–317

    Article  CAS  Google Scholar 

  55. Han Jie L, Jantan I, Yusoff SD et al (2021) Sinensetin: an insight on its pharmacological activities, mechanisms of action and toxicity. Front Pharmacol 11:553404

    Article  PubMed  PubMed Central  Google Scholar 

  56. Razak NA, Abu N, Ho WY et al (2019) Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep 9:1514

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lee K, Hyun Lee D, Jung YJ et al (2016) The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Appl Biol Chem 59:193–199

    Article  CAS  Google Scholar 

  58. Estevez S, Marrero MT, Quintana J (2014) Eupatorin-induced cell death in human leukemia cells is dependent on caspases and activates the mitogen-activated protein kinase pathway. PLoS One 9:e112536

    Article  PubMed  PubMed Central  Google Scholar 

  59. Androutsopoulos V, Arroo RRJ, Hall JF et al (2008) Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Res 10(3):R39

    Article  PubMed  PubMed Central  Google Scholar 

  60. Doleckova I, Rarova L, Gruz J et al (2012) Antiproliferative and antiangiogenic effects of flavone eupatorin, an active constituent of chloroform extract of Orthosiphon stamineus leaves. Fitoterapia 83:1000–1007

    Article  CAS  PubMed  Google Scholar 

  61. Laavola M, Nieminen R, Yam MF et al (2012) Flavonoids eupatorin and sinensetin present in Orthosiphon stamineus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Med 78:779–786

    Article  CAS  PubMed  Google Scholar 

  62. Yam MF, Tan CS, Ahmad M, Shibao R (2016) Mechanism of vasorelaxation induced by eupatorin in the rats aortic ring. Eur J Pharmacol 789:27–36

    Article  CAS  PubMed  Google Scholar 

  63. Devi SR, Thoppil JE (2016) Cytotoxic studies and phytochemical analysis of Orthosiphon thymiflorus (Roth) Sleesen. Int J Pharm Sci 8(2):249–255

    Google Scholar 

  64. Holla H, Srinivas Y, Majhi A et al (2011) Novel cytotoxic constituents of Orthosiphon diffusus. Tetrahedron Lett 52(1):49–52

    Article  CAS  Google Scholar 

  65. Yamaguchi M, Levy RM (2016) β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro. Exp Ther Med 12(6):3602–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin F, Michael H, Anthony B (2020) Medicinal plant analysis: a historical and regional discussion of emergent complex techniques. Front Pharmacol 10

    Google Scholar 

  67. Singh R (2015) Medicinal plants: a review. J Plant Sci, Special Issue: Medicinal Plants 3(1–1):50–55

    Google Scholar 

  68. Clark AM (1996) Natural products as a resource for new drugs. Pharm Res 13(8):1133–1141

    Article  CAS  PubMed  Google Scholar 

  69. Karthika C, Manivannan S (2018) Pharmacognostic, physicochemical analysis and phytochemical screening of the leaves of W. trilobata. L. Int J ChemTech Res 11(02):124–131

    CAS  Google Scholar 

  70. Chen SL, Yu H, Luo HM et al (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37

    Article  PubMed  PubMed Central  Google Scholar 

  71. Masuda T, Masuda K, Shiragami S et al (1992) Orthosiphol A and B, novel diterpenoid inhibitors of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation, from Orthosiphon stamineus. Tetrahedron 48(33):6787–6792

    Article  CAS  Google Scholar 

  72. Matsubara T, Bohgaki T, Watarai M et al (1999) Antihypertensive actions of methylripariochromene A from Orthosiphon aristatus, an Indonesian traditional medicinal plant. Biol Pharm Bull 22(10):1083–1088

    Article  CAS  PubMed  Google Scholar 

  73. Shibuya H, Bohgaki T, Matsubara T et al (1999) Chemical structures of two new isopimarane-type diterpenes, Orthosiphonones A and B and a new benzochromene, orthochromene a from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull 47:695–698

    Article  CAS  Google Scholar 

  74. Ohashi K, Bohgaki T, Matsubara T et al (2000) Indonesian Medicinal Plants XXIII: Chemical Structure of two new migrated Pimarene-type Diterpenes, Neoorthosiphols A and B and suppressive effect on rat Thoracic Aorta of chemical constituents isolated from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull 48(3):433–435

    Article  CAS  Google Scholar 

  75. Mangali GR (2019) Antimicrobial activity of Orthosiphon aristatus (Balbas pusa) nano particle and leaf extract against E. coli and S. aureus. World. J Pharm Pharm Sci 9(3):174–199

    Google Scholar 

  76. Kottaimuthu R (2008) Ethnobotany of the Valaiyans of Karandamalai, Dindigul District, Tamil Nadu, India. Ethnobot Leafl 12:195–203

    Google Scholar 

  77. Kiruthika A, Meenakshi SM (2011) Anticancer studies on Orthosiphon pallidus royle. and Peristrophe bicalyculata nees. J Pharm Res 4:2654–2656

    Google Scholar 

  78. Singh MK, Dhongade H, Tripathi DK (2017) Orthosiphon pallidus, a potential treatment for patients with breast cancer. J Pharmacopunct 20(4):265–273

    Google Scholar 

  79. Ashokan K, Muthuraman MS (2011) Anticancer studies on Orthosiphon pallidus royle and Peristrophe bicalyculata nees. J Pharm Res 4:2654–2656

    CAS  Google Scholar 

  80. Regina KMM, Adama H, Jeanne M et al (2015) Ethnobotany and Ethnopharmacognosy of Lamiaceae species from Central Burkina Faso: Leucas martinicensis (Jacquin) R. Brown, Hoslundia opposita Vahl and Orthosiphon pallidus Royle Ex Benth. Am J Ethnomed 2(4):219–232

    Google Scholar 

  81. Awale S, Tezuka Y, Banskota AH et al (2003) Siphonols A-E: novel nitric oxide inhibitors from Orthosiphon stamineus of Indonesia. Bioorgan Med Chem Lett 13:31–35

    Article  CAS  Google Scholar 

  82. Arafat OM, Tham SY, Sadikun A et al (2008) Studies on diuretic and hypouricemic effects of Orthosiphon stamineus methanol extracts in rats. J Ethnopharmacol 118(3):354–360

    Article  CAS  PubMed  Google Scholar 

  83. Ho CH, Noryati I, Sulaiman SF et al (2010) In vitro antibacterial and antioxidant activities of Orthosiphon stamineus Benth. extracts against food-borne bacteria. Food Chem 122:1168–1172

    Article  CAS  Google Scholar 

  84. Hossain MA, Mizanur Rahman SM (2015) Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arab J Chem 8:218–221

    Article  CAS  Google Scholar 

  85. Pauzi N, Mohd KS, Halim NHA et al (2018) Orthosiphon stamineus extracts inhibits proliferation and induces apoptosis in uterine fibroid cells. Asian Pac J Cancer Prev 19(10):2737–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Retinasamy T, Shaikh MF, Kumari Y et al (2020) Orthosiphon stamineus standardized extract reverses Streptozotocin-induced Alzheimer’s disease-like condition in a rat model. Biomedicine 8:104

    CAS  Google Scholar 

  87. Rao NK, Bethala K, Sisinthy SP, Rajeswari KS (2014) Antidiabetic activity of Orthosiphon stamineus Benth roots streptozotocin induced type 2 diabetic rats. Asian J Pharm Clin Res 7:149–153

    Google Scholar 

  88. Ahamed Basheer M, Abdul Majid A (2010) Medicinal potentials of Orthosiphon stamineus Benth. Webmed Central Cancer 1:1–13

    Google Scholar 

  89. Halim NH, Pauzi N, Hamil SHR et al (2017) Standardization of Orthosiphon stamineus raw materials and extracts for anti-uterine fibroid. Int J Pharmacogn Phytochem Res 9:512–515

    Google Scholar 

  90. Alshawsh MA, Abdulla MA, Ismail S et al (2012) Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon stamineus. Molecules 17(5):5385–5395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lokman EF, Saparuddin F, Muhammad H et al (2019) Orthosiphon stamineus as a potential antidiabetic drug in maternal hyperglycemia in streptozotocin-induced diabetic rats. Integr Med Res 8(3):173–179

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yuniarto A, Susilawati ELIS, Khairunnisa ISMI et al (2017) Antioxidant and gastric ulcer healing effect of Orthosiphon stamineus (Benth.) leaves extract in aspirin-induced rats. Asian J pharm. Clin Res 10(2):397–399

    CAS  Google Scholar 

  93. Movahedi A, Basir R, Rahmat A et al (2015) Orthosiphon stamineus: an Asian tea with substantial anticancer properties. J Nutr Sci Diet:44–52

    Google Scholar 

  94. Nair GM (2011) Evaluation of antioxidant properties of some species of Lamiaceae. J Med Aromat Plant Sci 33(1):27–30

    Google Scholar 

  95. Alshawsh MA, Abdulla MA, Ismail S et al (2011) Hepatoprotective effects of Orthosiphon stamineus extract on thioacetamide-induced liver cirrhosis in rats. Evidence-Based Complement Alternat Med 2011:103039

    Article  Google Scholar 

  96. Yam MF, Basir R, Asmawi MZ et al (2007) Antioxidant and hepatoprotective effects of Orthosiphon stamineus benth. Standardized extract. Am J Chin Med 35:115–126

    Article  PubMed  Google Scholar 

  97. Yam MF, Asmawi MZ, Basir R (2008) An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf extract. J Med Food 11:362–368

    Article  CAS  PubMed  Google Scholar 

  98. Kavimani S, Ilango R, Thangadurai JG et al (1997) Diuretic activity of aqueous extract of Orthosiphon thymiflorus in rats. Indian J Pharm Sci 59(2):96

    Google Scholar 

  99. Sini KR, Haribabu Y, Sajith MS, Sreekumar SK (2012) In-vitro Cytotoxic activity of Orthosiphon thymiflorus(Roth.) sleensen leaf extract against dalton lymphoma ascites cell line. J Chem Pharm Res 4(1):917–921

    Google Scholar 

  100. Mercy Lavanya S, Gnanamani A, Ilavarasan R (2015) Evaluation of the antibacterial activity of the extracts of the whole plant of Orthosiphon thymiflorus (Roth.) Sleesen. J Chem Pharm Res 7(2):872–875

    Google Scholar 

  101. Neilson EH, Goodger JQ, Woodrow IE et al (2013) Plant chemical defense: at what cost? Trends Plant Sci 18(5):250–258

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Thenmozhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abirami, K., Revathi, P., Thenmozhi, K., Sowndhararajan, K. (2023). Comprehensive Review on Wild Basil Genus Orthosiphon of Lamiaceae. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-28780-0_15

Download citation

Publish with us

Policies and ethics