Skip to main content

Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications

  • Chapter
  • First Online:
Two-Dimensional Materials for Environmental Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 332))

Abstract

The alarmingly rising environmental pollution adversely affects the sustainable growth of modern civilization. Scientists have persistently been putting tremendous efforts over the decades to develop environment benevolent technologies to overcome this major challenge. Photocatalysis is one such technology which needs renewable solar energy and abundantly available water resources as driving forces for pollutants’ degradation. In addition, the selection of an appropriate semiconductor is highly essential to degrade toxic organic compounds, hazardous heavy metals and noxious gases into harmless products efficiently. Among various semiconductor photocatalysts, g‑C3N4 (GCN) is considered a robust photocatalyst because of several fascinating properties like metal-free chemical nature, visible-light-responsive activity with moderate band gap of 2.7 eV, tunable electronic structure, facile synthesis, low cost, high thermal and chemical stability. However, low surface area (∼10 m2 g−1), high rate of charge carriers recombination, incomplete solar spectrum absorbance and inadequate valence band position (1.4 eV vs NHE) are some of the limitations due to which expected photocatalytic performance of GCN is yet to be achieved. Therefore, modification strategies such as exfoliating bulk GCN into nanosheets, incorporating foreign elements into its crystal structure and heterostructure formation have been employed to overcome these limitations to achieve high photocatalytic efficiency. In this chapter discusses the basic principle of photocatalytic pollutant degradation over a semiconductor surface. Recent developments in modification strategies to enhance the photoactivity of GCN have been summarised systematically. Photocatalytic applications of GCN-based photocatalysts with respect to environmental remediation are presented in this chapter. The challenges and future perspectives in designing GCN-based photocatalysts for efficient performance towards environmental applications are addressed along with the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Acharya, K. Parida, A review on TiO2/g–C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation. J. Environ. Chem. Eng. 8, 103896 (2020)

    Article  Google Scholar 

  2. C. Zhai, M. Zhu, Y. Lu, F. Ren, C. Wang, Y. Du, P. Yang, Reduced graphene oxide modified highly ordered TiO2 nanotube arrays photoelectrode with enhanced photoelectrocatalytic performance under visible-light irradiation. Phys. Chem. Chem. Phys. 16(28), 14800 (2014)

    Article  Google Scholar 

  3. V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interf. Sci. 193, 24–34 (2013)

    Article  Google Scholar 

  4. Z. Jiang, H. Sun, T. Wang, B. Wang, W. Wei, H. Li, S. Yuan, T. An, H. Zhao, J. Yu, P.K. Wong, Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction, energy environ. Sci. 11, 2382–2389 (2018)

    Google Scholar 

  5. R. Acharya, A. Lenka, K. Parida, Magnetite modified amino group based polymer nanocomposites towards efficient adsorptive detoxification of aqueous Cr (VI): a review. J. Mol. Liq. 337, 116487 (2021)

    Article  Google Scholar 

  6. T.X.H. Le, R. Esmilaire, M. Drobek, M. Bechelany, C. Vallicari, D.L. Nguyen, A. Julbe, S. Tingry, M. Cretin, Design of a novel fuel cell-Fenton system: a smart approach to zero energy depollution. J. Mater. Chem. A. 4, 17686–17693 (2016)

    Article  Google Scholar 

  7. R. Acharya, K. Parida, A review on adsorptive remediation of Cr (VI) by magnetic iron oxides and their modified form, 2020. Biointerf. Res. Appl. Chem. 10, 5266–5272 (2020)

    Article  Google Scholar 

  8. R. Acharya, K. Parida, Valorization of agricultural wastes as low-cost adsorbents towards efficient removal of aqueous Cr(VI), in: Shahid-ul-Islam, Shalla, A.H., Khan, S.A. (Eds.), Handbook of Biomass Valorization for Industrial Applications, John Wiley & Sons, pp. 507–530 (2022)

    Google Scholar 

  9. R. Acharya, S. Martha, K.M. Parida, Remediation of Cr (VI) using clay minerals, biomasses and industrial wastes as adsorbents, in Shahid-ul-Islam (ed.) Advanced Materials for Wastewater Treatment, Scrivener Publishing LLC, pp. 129–170 (2017)

    Google Scholar 

  10. R. Acharya, B. Naik, K.M. Parida, Adsorption of Cr (VI) and textile dyes on to mesoporous silica, titanate nanotubes and layer double hydroxides, in: Shahid ul-Islam, B.S. Butola (eds.) Nanomaterials in the Wet Processing of Textiles, John Wiley Scrivener USA, pp. 219–260 (2018)

    Google Scholar 

  11. M.V. Sofianou, M. Tassi, V. Psycharis, N. Boukos, S. Thanos, T. Vaimakis, J. Yu, C. Trapalis, Solvothermal synthesis and photocatalytic performance of Mn4+-doped anatase nanoplates with exposed 001 facets. Appl. Catal. B Environ. 162, 27 (2015)

    Article  Google Scholar 

  12. T.X.H. Le, M. Bechelany, J. Champavert, M. Cretin, A highly active based graphene cathode for the electro-fenton reaction. RSC Adv. 5(53), 42536 (2015)

    Article  Google Scholar 

  13. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hubner, Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018)

    Article  Google Scholar 

  14. X. Jiang, M. Manawan, T. Feng, R. Qian, T. Zhao, G. Zhou, F. Kong, Q. Wang, S. Dai, J.H. Pan, Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles? Catal. Today 300(2018), 12–17 (2018)

    Article  Google Scholar 

  15. S. Mansingh, S. Sultana, R. Acharya, M.K. Ghosh, K. Parida, Efficient Photon conversion via double charge dynamics CeO2-BiFeO3 p-n heterojunction photocatalyst promising toward N2 fixation and Phenol-Cr (VI) detoxification. Inorg. Chem. 59, 3856–3873 (2020)

    Article  Google Scholar 

  16. S. Mansingh, R. Acharya, S. Martha, K.M. Parida, Pyrochlore Ce2Zr2O7 decorated over rGO: a photocatalyst that proves to be efficient towards the reduction of 4-nitrophenol and degradation of ciprofloxacin under visible light. Phys. Chem. Chem. Phys. 20, 9872–9885 (2018)

    Article  Google Scholar 

  17. S. Mishra, R. Acharya, Photocatalytic applications of graphene based semiconductor composites: a review. Mater. Today Proceed. 35(2021), 164–169 (2021)

    Article  Google Scholar 

  18. R. Acharya, B. Naik, K.M. Parida, Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction, Beilstein. J. Nanotechnol. 9, 1448–1470 (2018)

    Google Scholar 

  19. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972)

    Google Scholar 

  20. J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions Bull. Environ. Contam. Toxicol. 16, 697–701 (1976)

    Article  Google Scholar 

  21. M. Nasr, C. Eid, R. Habchi, P. Miele, M. Bechelany, Recent progress on TiO2 nanomaterials for photocatalytic applications. Chem Sus Chem 11, 3023–3047 (2018)

    Article  Google Scholar 

  22. W. Zhang, H. He, H. Li, L. Duan, L. Zu, Y. Zhai, W. Li, L. Wang, H. Fu, D. Zhao, Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 11, 2003303 (2021)

    Article  Google Scholar 

  23. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  Google Scholar 

  24. G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the ‘“holy grail”’ for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci. 12, 2080–2147 (2019)

    Google Scholar 

  25. S. Pati, R. Acharya, An overview on g-C3N4 as a robust photocatalyst towards the sustainable generation of H2 energy. Mater. Today Proceed. 35, 175–178 (2021)

    Article  Google Scholar 

  26. S. Zhang, P. Gu, R. Ma, C. Luo, T. Wen, G. Zhao, W. Cheng, X. Wang, Recent developments in fabrication and structure regulation of visible-light driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal. Today 335, 65–77 (2019)

    Article  Google Scholar 

  27. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017)

    Article  Google Scholar 

  28. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    Article  Google Scholar 

  29. Q. Zhang, X. Liu, M. Chaker, D. Ma, Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting. ACS Materials Lett. 3, 663–697 (2021)

    Article  Google Scholar 

  30. S. Sahoo, R. Acharya, An overview on recent developments in synthesis and molecular level structure of visible-light responsive g-C3N4 photocatalyst towards environmental remediation. Mater. Today Proceed. 35, 150–155 (2021)

    Article  Google Scholar 

  31. L. Acharya, B.P. Mishra, S.P. Pattnaik, R. Acharya, K. Parida, Incorporating nitrogen vacancies in exfoliated B-doped g-C3N4 towards improved photocatalytic ciprofloxacin degradation and hydrogen evolution. New. J. Chem. 46, 3493–3503 (2022)

    Article  Google Scholar 

  32. T. Su, Q. Shao, Z. Qin, Z. Guo, B. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018)

    Article  Google Scholar 

  33. R. Acharya, S. Pati, K. Parida, A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization. J. Mol. Liq. 357, 119105 (2022)

    Article  Google Scholar 

  34. S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal. Sci. Technol. 5, 5048–5061 (2015)

    Article  Google Scholar 

  35. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018)

    Article  Google Scholar 

  36. J. Yang, H. Wang, L. Jiang, H. Yu, Y. Zhao, H. Chen, X. Yuan, L. Liang, H. Li, Z. Wu, Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 427, 130991 (2022)

    Article  Google Scholar 

  37. A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J. Mater. Chem. A. 5, 23406 (2017)

    Article  Google Scholar 

  38. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016)

    Article  Google Scholar 

  39. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485–2534 (2015)

    Article  Google Scholar 

  40. R. Acharya, L. Acharya, K. Parida, BiFeO3-based materials for augmented photoactivity, Khursheed Ahmad and Waseem Raza (eds.) Perovskite Materials for Energy and Environmental Applications, John Wiley & Sons, Inc. p167–217 (2022)

    Google Scholar 

  41. S. Borthakur, L. Saikia, ZnFe2O4@g-C3N4 nanocomposites: an efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B. J. Environ. Chem. Eng. 7, 103035 (2019)

    Article  Google Scholar 

  42. S. Kim, K.H. Kim, C. Oh, K. Zhang, J.H. Park, Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy 4, 21–44 (2022)

    Article  Google Scholar 

  43. W. Zhang, L. Li, Y. Gao, D. Zhang, Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI), New. J. Chem. 44, 19961–19976 (2020)

    Google Scholar 

  44. Y. Wang, Y. Zhang, T.C. Zhang, G. Xiang, C. Wang, S. Yuan, Removal of trace arsenite through simultaneous photocatalytic oxidation and adsorption by magnetic Fe3O4@PpPDA@TiO2 core–shell nanoparticles. ACS Appl. Nano Mater. 3, 8495–8504 (2020)

    Article  Google Scholar 

  45. J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969–1974 (2012)

    Article  Google Scholar 

  46. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M.W. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 22, 7311 (2012)

    Article  Google Scholar 

  47. Y. Omomo, T. Sasaki, L.Z. Wang, M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 (2003)

    Article  Google Scholar 

  48. S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936 (2011)

    Article  Google Scholar 

  49. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  50. H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451 (2015)

    Article  Google Scholar 

  51. P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaronie, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A. 5, 3230 (2017)

    Article  Google Scholar 

  52. J. Yang, Z. Chen, N. Mao, D. An, B.D. Wang, Fahlman, Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 7, 2333 (2017)

    Article  Google Scholar 

  53. P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763 (2012)

    Article  Google Scholar 

  54. F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 358, 393–403 (2015)

    Article  Google Scholar 

  55. K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730 (2014)

    Article  Google Scholar 

  56. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013)

    Article  Google Scholar 

  57. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials science 331, 568 (2011)

    Google Scholar 

  58. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013)

    Article  Google Scholar 

  59. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  60. J.H. Lee, M.J. Park, S.J. Yoo, J.H. Jang, H.J. Kim, S.W. Nam, C.W. Yoon, J.Y. Kim, A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheet Nanoscale 7, 10334 (2015)

    Google Scholar 

  61. J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A. 1, 14766 (2013)

    Article  Google Scholar 

  62. F. Cheng, H. Wang, X. Dong, The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 51, 7176 (2015)

    Article  Google Scholar 

  63. S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic Degradation of ciprofloxacin under solar irradiation. J. Mater. Sci. 54, 5726–5742 (2019)

    Article  Google Scholar 

  64. S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Green exfoliation of graphitic carbon nitride towards decolourization of congo-red under solar irradiation. J. Environ. Chem. Eng. 7, 103456 (2019)

    Article  Google Scholar 

  65. Y. Fang, I.S. Merenkov, X. Li, J. Xu, S. Lin, M.L. Kosinova, X. Wang, Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. J. Mat. Chem. 8, 13059–13064 (2020)

    Article  Google Scholar 

  66. L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Exfoliated boron nitride (e-BN) tailored exfoliated graphitic carbon nitride (e-CN): an improved visible light mediated photocatalytic approach towards TCH degradation and H2 evolution. Inorg. Chem. 60, 5021–5033 (2021)

    Article  Google Scholar 

  67. B.P. Mishra, K. Parida, Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. J. Mat. Chem. A. 9, 10039–10080 (2021)

    Article  Google Scholar 

  68. S. Patnaik, D.P. Sahoo, K. Parida, Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon 172, 682–711 (2021)

    Article  Google Scholar 

  69. M.S. Khan, F. Zhang, M. Osada, S.S. Mao, S. Shen, Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Solar RRL 4, 1900435 (2020)

    Article  Google Scholar 

  70. X. Dong, F. Cheng, Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mat. Chem. A. 3, 23642–23652 (2015)

    Article  Google Scholar 

  71. L. Ke, P. Li, X. Wu, S. Jiang, M. Luo, Y. Liu, Z. Le, C. Sun, S. Song, Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl. Catal. B: Environmental. 205, 319–326 (2017)

    Article  Google Scholar 

  72. X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 51, 751–790 (2021)

    Article  Google Scholar 

  73. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B: Environmental 217, 388–406 (2017)

    Article  Google Scholar 

  74. Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution. ACS Sustain. Chem. Eng. 7, 5801–5807 (2019)

    Article  Google Scholar 

  75. L. Acharya, G. Swain, B.P. Mishra, R. Acharya, K. Parida, Development of MgIn2S4 microflower-embedded exfoliated B-Doped g-C3N4 nanosheets: p–n heterojunction photocatalysts toward photocatalytic water reduction and H2O2 production under visible-light irradiation. ACS Appl. Energy Mater. 5, 2838–2852 (2022)

    Article  Google Scholar 

  76. F. He, Z. Wang, Y. Li, S. Peng, B. Liu, The nonmetal modulation of composition and morphology of g-C3N4 -based photocatalysts. Appl. Catal. B: Environ. 269, 118828 (2020)

    Article  Google Scholar 

  77. S. Tonda, S. Kumar, S. Kandula, V. Shanker, Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mat. Chem. A. 2, 6772–6780 (2014)

    Article  Google Scholar 

  78. J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9, 1708–1715 (2017)

    Article  Google Scholar 

  79. S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao, Z. Lv, Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2015)

    Article  Google Scholar 

  80. P. Chen, P. Xing, Z. Chen, H. Lin, Y. He, Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. Int. J. Hydrog. Energy. 43, 19984–19989 (2018)

    Article  Google Scholar 

  81. Y.R. Lin, G.V.C. Dizon, K. Yamada, C.Y. Liu, A. Venault, H.Y. Lin, M. Yoshida, C. Hu, Sulfur-doped g-C3N4 nanosheets for photocatalysis: Z-scheme water splitting and decreased biofouling. J. Colloid Interface Sci. 567, 202–212 (2020)

    Article  Google Scholar 

  82. Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl. Catal. B: Environ. 203, 343–354 (2017)

    Article  Google Scholar 

  83. J. Gao, J. Wang, X. Qian, Y. Dong, H. Xu, R. Song, C. Yan, H. Zhu, Q. Zhong, G. Qian, J. Yao, One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis. J. Solid State Chem. 228, 60–64 (2015)

    Article  Google Scholar 

  84. Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced potocatalytic H2 evolution under visible light. Carbon 99, 111–117 (2016)

    Article  Google Scholar 

  85. Y. Wang, S. Zhao, W. Zhang, J. Fang, Y. Zhou, S. Yuan, One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 440, 258–265 (2018)

    Article  Google Scholar 

  86. L. Acharya, S. Nayak, S.P. Pattnaik, R. Acharya, K. Parida, Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J. Colloid Interface Sci. 566, 211–223 (2020)

    Article  Google Scholar 

  87. J. Zhang, S. Hu, Y. Wang, A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC adv. 4, 62912–62919 (2014)

    Article  Google Scholar 

  88. G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B. 198, 347 (2016)

    Article  Google Scholar 

  89. N. Tian, H.W. Huang, X. Du, F. Dong, Y.H. Zhang, , Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 7, 11584–11612 (2019)

    Google Scholar 

  90. Q.L. Xu, L.Y. Zhang, J.G. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)

    Article  Google Scholar 

  91. P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014)

    Article  Google Scholar 

  92. H. Yang, A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021)

    Article  Google Scholar 

  93. M. Shim, M. McDaniel, N. Oh, Prospects for strained type-II nanorod heterostructures. J. Phys. Chem. Lett. 2, 2722–2727 (2011)

    Article  Google Scholar 

  94. H. McDaniel, P.E. Heil, C.L. Tsai, K.K. Kim, M. Shim, Integration of type II nanorod heterostructures into photovoltaics. ACS Nano 5, 7677–7683 (2011)

    Article  Google Scholar 

  95. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014)

    Article  Google Scholar 

  96. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)

    Article  Google Scholar 

  97. X. Li, M. Edelmannová, P. Huo, K. Kočí, Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2. J Mater Sci 55, 3299–3313 (2020)

    Article  Google Scholar 

  98. D.R. Paul, S. Gautam, P. Panchal, S.P. Nehra, P. Choudhary, A. Sharma, ZnO-Modified g-C3N4: a potential photocatalyst for environmental application. ACS Omega 5, 3828–3838 (2020)

    Article  Google Scholar 

  99. I. Ali, J.-O. Kim, Optimization of photocatalytic performance of a gC3N4–TiO2 nanocomposite for phenol degradation in visible light. Mat. Chem. Phys. 261, 124246 (2021)

    Article  Google Scholar 

  100. R. He, K. Cheng, Z. Wei, S. Zhang, D. Xu, Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Appl. Surf. Sci. 465, 964–972 (2019)

    Article  Google Scholar 

  101. J. Li, Y. Liu, C. Chen, Fabrication of gC3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. J. Photochem. Photobiol. A : Chem. 317, 151–160 (2016)

    Article  Google Scholar 

  102. T. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D gC3N4/TiO2 free separation photocatalyst. Chem. Eng. J. 370, 287–294 (2019)

    Article  Google Scholar 

  103. Y. Tian, B. Chang, J. Fu, B. Zhou, J. Liu, F. Xi, X. Dong, J., Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Solid State Chem. 212, 1 (2014)

    Google Scholar 

  104. J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 243, 556–565 (2019)

    Article  Google Scholar 

  105. Y. Zhen, C. Yang, F. Fu, H. Shen, W. Xue, C. Gu, J. Feng, Y. Zhang, Y. Liang, Photocatalytic performance and mechanism insights of S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reaction under visible light. Phys. Chem. Chem. Phys. 22, 26278–26288 (2020)

    Article  Google Scholar 

  106. K.N. Van, H.T. Huu, V.N.N. Thi, T.L.L. Thi, D.H. Truong, Ts.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 289, 133120 (2022)

    Google Scholar 

  107. S. Mishra, R. Acharya, K. Parida, Spinel-ferrite-decorated graphene-based nanocomposites for enhanced photocatalytic detoxification of organic dyes in aqueous medium: a review. Water 15(1), 81 (2023)

    Article  Google Scholar 

  108. M. Faisala, M. Jalalaha, F.A. Harraza, A.M. El-Tonic, A. Khan, M.S. Al-Assiri, Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination. Ceram. Int. 46, 22090–22101 (2020)

    Article  Google Scholar 

  109. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methylorange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010)

    Article  Google Scholar 

  110. W. Gu, F. Lu, C. Wang, S. Kuga, L.-Z. Wu, Y. Huang, M. Wu, Face-to-Face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity, ACS Appl. Mater. Interfaces. 9, 28674–28684 (2017)

    Article  Google Scholar 

  111. L. Wang, Y. Li, P. Han, Electrospinning preparation of g-C3N4/Nb2O5 nanofibers heterojunction for enhanced photocatalytic degradation of organic pollutants in water. Sci. Rep. 11, 22950 (2021)

    Article  Google Scholar 

  112. V. Kumaravel, J. Bartlett, S.C. Pillai, Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5, 486–519 (2020)

    Article  Google Scholar 

  113. I. Masood ul Hasan, L. Peng, J. Mao, R. He, Y. Wang, J. Fu, N. Xu, J. Qiao, Carbon‐based metalfree catalysts for electrochemical CO2 reduction: activity, selectivity, and stability. Carbon Energy 3, 24–49

    Google Scholar 

  114. X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016)

    Article  Google Scholar 

  115. Y. Shioya, K. Ikeue, M. Ogawa, M. Anpo, synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Appl Catal A-Gen. 254, 251–259 (2003)

    Article  Google Scholar 

  116. A. Hasani, M.A. Teklagne, H.H. Do, S.H. Hong, Q.V. Le, S.H. Ahn, S.Y. Kim, Graphene-based catalysts for electrochemical carbon dioxide reduction. Carbon Energy. 2, 158–175 (2020)

    Article  Google Scholar 

  117. D. Chen, Y. Wang, D. Liu, H. Liu, C. Qian, H. He, J. Yang, Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy. 2, 443–451 (2020)

    Article  Google Scholar 

  118. E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals bycatalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013)

    Google Scholar 

  119. W. Dai, H. Xu, J. Yu, X. Hu, X. Luo, X. Tu, L. Yang, Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appl. Surf. Sci. 356, 173–180 (2015)

    Article  Google Scholar 

  120. S.W. Jo, B.S. Kwak, K.M. Kim, J.Y. Do, N.-K. Park, S.O. Ryu, H.-J. Ryu, J.-I. Baek, M. Kang, Effectively CO2 photoreduction to CH4 by the synergistic effects of Ca and Ti on Ca-loaded TiSiMCM-41 mesoporous photocatalytic systems. Appl. Surf. Sci. 355, 891–901 (2015)

    Article  Google Scholar 

  121. M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978)

    Article  Google Scholar 

  122. W. Jiang, X. Yin, F. Xin, Y. Bi, Y. Liu, X. Li, Preparation of CdIn2S4 microspheres and application for photocatalytic reduction of carbondioxide. Appl. Surf. Sci. 288, 138–142 (2014)

    Article  Google Scholar 

  123. Y.-X. Pan, Z.-Q. Sun, H.-P. Cong, Y.-L. Men, S. Xin, J. Song, S.-H. Yu, Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 9, 1689–1700 (2016)

    Article  Google Scholar 

  124. P. Li, H. Xu, L. Liu, T. Kako, N. Umezawa, H. Abe, J. Ye, Constructing cubic-orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A. 2, 5606–5609 (2014)

    Article  Google Scholar 

  125. Y. Jia, H. Ma, W. Zhang, G. Zhu, W. Yang, N. Son, M. Kang, C. Liu, Z-scheme SnFe2O4-graphitic carbon nitride: reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 383, 123172 (2020)

    Article  Google Scholar 

  126. X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019)

    Article  Google Scholar 

  127. Q. Zhang, C.F. Lin, B.Y. Chen, T. Ouyang, C.T. Chang, Deciphering visible light photoreductive conversion of CO2 to formic acid and methanol using waste prepared material. Environ. Sci. Technol. 49, 2405–2417 (2015)

    Article  Google Scholar 

  128. M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. J Mater Chem A. 3, 5189–5196 (2015)

    Article  Google Scholar 

  129. K. Sonowal, N. Nandal, P. Basyach, L. Kalita, S.L. Jain, L. Saikia, Photocatalytic reduction of CO2 to methanol using Zr (IV)-based MOF composite with g-C3N4 quantum dots under visible light irradiation. J. CO2 Utiliz 57, 101905 (2022)

    Google Scholar 

  130. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review environ. Sci. Technol. 50, 7290–7304 (2016)

    Article  Google Scholar 

  131. C. Chen, Z. Chai, X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 47, 2322–2356 (2018)

    Article  Google Scholar 

  132. Z. Zhang, C. Liu, Z. Dong, Y. Dai, G. Xiong, Y. Liu, Y. Wang, Y. Wang, Y. Liu, synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI) Appl. Surf. Sci. 520, 146352 (2020)

    Article  Google Scholar 

  133. R. Acharya, P. Pani, Visible light susceptible doped TiO2 photocatalytic systems: an overview. Mater. Today: Proc. 67, 1276–1282 (2022)

    Google Scholar 

  134. S.P. Tripathy, S. Subudhi, R. Acharya, R. Acharya, M. Das, K.M. Parida, Adsorptive removal of Cr (VI) onto UiO-66-NH2 and its determination by radioanalytical techniques. J. Radioanal. Nucl. Chem. 322, 983–992 (2019)

    Article  Google Scholar 

  135. M. Wang, Y. Zeng, G. Dong, C. Wang, Br doping of g-C3N4 towards enhanced photocatalytic performance in Cr (VI) reduction, Chinese. J. Catal. 41, 1498–1510 (2020)

    Google Scholar 

  136. Y. Wang, S. Bao, Y. Liu, W. Yang, Y. Yu, M. Feng, K. Li, Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Appl. Surf. Sci. 510, 145495 (2020)

    Article  Google Scholar 

  137. Y.H. Wang, M. Frutschi, E. Suvorova, V. Phrommavanh, M. Descostes, A.A.A. Osman, G. Geipel, L.R. Bernier-, Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat. Commun. 4, 2942–2950 (2013)

    Article  Google Scholar 

  138. Z. Huang, Z. Li, Q. Wu, L. Zheng, L. Zhou, Z. Chai, X. Wang, W. Shi, Simultaneous elimination of cationic uranium(vi) and anionic rhenium(vii) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study, Environ. Sci. Nano. 5, 2077–2087 (2018)

    Google Scholar 

  139. S. Lee, U. Kang, G. Piao, S. Kim, D.S. Han, H. Park, Homogeneous photoconversion of seawater uranium using copper and iron mixed-oxide semiconductor electrodes. Appl. Catal. B. 207, 35–41 (2017)

    Google Scholar 

  140. G. Wang, J. Zhen, L. Zhou, F. Wu, N. Deng, Adsorption and photocatalytic reduction of U (VI) in aqueous TiO2 suspensions enhanced with sodium formate. J. Radioanal. Nucl. Chem. 304, 579–585 (2015)

    Article  Google Scholar 

  141. S. Tripathi, R. Bose, A. Roy, S. Nair, S. Ravishankar, Synthesis of hollow nanotubes of Zn2SiO4 or SiO2: mechanistic understanding and uranium adsorption behaviour. ACS Appl. Mater. Interfaces. 7, 26430–26436.

    Google Scholar 

  142. C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu, Z. Le, S. Jiang, S. Song, Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci. 360, 1016–1022 (2016)

    Article  Google Scholar 

  143. C. Lu, P. Zhang, S. Jiang, X. Wu, S. Song, M. Zhu, Z. Lou, Z. Li, F. Liu, Y. Liu, Y. Wang, Z. Le, Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B. 200, 378–385 (2017)

    Google Scholar 

  144. X. Jiang, Q. Xing, X. Luo, F. Li, J. Zou, S. Liu, X. Lia, X. Wang, Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B. 228, 29–38 (2018)

    Google Scholar 

  145. Y. Wang, X.M. Liu, Q.I. Chen, T.C. Zhang, L. Ouyang, S.J. Yuan, Simultaneous photocatalytic oxidation and adsorption for efficient As(III) removal by magnetic BiOI/γ-Fe2O3 core-shell nanoparticles. Mater. Today Chem. 24, 100823 (2022)

    Article  Google Scholar 

  146. M.N. Maga˜na, A.E. Gonz´alez, L.M. Ix, S.C. Díaz, R. G´omez, Improved photocatalytic oxidation of arsenic (III) with WO3/TiO2 nanomaterials synthesized by the sol-gel method. J. Environ. Manag. 282, 111602 (2021)

    Google Scholar 

  147. H. Eslami, M.H. Ehrampoush, A. Esmaeili, A.A. Ebrahimi, M.H. Salmani, M.T. Ghaneian, H. Falahzadeh, Efficient photocatalytic oxidation of arsenite from contaminated water by Fe2O3-Mn2O3 nanocomposite under UVA radiation and process optimization with experimental design. Chemosphere 207, 303–312 (2018)

    Article  Google Scholar 

  148. W. Ali, N. Mushtaq, T. Javed, H. Zhang, K. Ali, A. Rasool, A. Farooqi, Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environ. Pollut. 245, 77–88 (2019)

    Article  Google Scholar 

  149. A.S. Maghsoudi, S. Hassani, K. Mirnia, M. Abdollahi, Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. Int. J. Nanomed. 16, 803–832 (2021)

    Article  Google Scholar 

  150. S.-Y. Yu, Y. Liu, H.-T. Ren, Z.-Y. Liu, X. Han, Importance of the ligand-to-metal charge transfer (LMCT) pathway in the photocatalytic oxidation of arsenite by TiO2. Phys. Chem. Chem. Phys. 24, 13661–13670 (2022)

    Article  Google Scholar 

  151. M. Xiao, R. Li, J. Yin, J. Yang, X. Hu, H. Xiao, W. Wang, T. Yang, Enhanced photocatalytic oxidation of As(III) by TiO2 modified with Fe3O4 through Ti-O-Fe interface bonds. Colloids Surf., A 651, 129678 (2022)

    Article  Google Scholar 

  152. L. Ouyang, Y. Zhang, Y. Wang, X. Wang, S. Yuan, Insights into the adsorption and photocatalytic oxidation behaviors of boron-doped TiO2/gC3N4 nanocomposites toward As(III) in aqueous solution. Ind. Eng. Chem. Res. 60, 7003–7013 (2021)

    Article  Google Scholar 

  153. C. Wang, Y. Dai, X. Fu, X. Lu, J. Zhang, A novel layer-layer crossed structure of bentonite/g-C3N4 for enhanced photocatalytic oxidation of arsenic (III) in a wide pH range. Surf. Interf. 26, 101365 (2021)

    Article  Google Scholar 

  154. X. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts. Electrochim. Acta 49, 1435–1444 (2004)

    Article  Google Scholar 

  155. K. Sundseth, J. Pacyna, E. Pacyna, N. Pirrone, R. Thorne, Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Publ. Health 14, 105–119 (2017)

    Article  Google Scholar 

  156. Y. Fu, J. Jiang, Z. Chen, S. Ying, J. Wang, J. Hu, Rapid and selective removal of Hg (II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly (m-aminothiophenol) nanocomposite. J. Mol. Liq. 286, 110746 (2019)

    Article  Google Scholar 

  157. Y. Li, M. Xia, F. An, N. Ma, X. Jiang, S. Zhu, D. Wang, J. Ma, Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon. J. Hazard. Mater. 371, 33–41 (2019)

    Article  Google Scholar 

  158. G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods. Desalination 270, 241–247 (2011)

    Article  Google Scholar 

  159. H. Alshaikh, A. Shawky, L.S. Roselin, Promoted visible-light photocatalytic reduction of Hg2+ over CuAl2O4-decorated g-C3N4 nanoheterojunctions synthesized by solution process. J. Env. Chem. Eng. 9, 106778 (2021)

    Article  Google Scholar 

  160. R.M. Mohamed, A.A. Ismail, Mesoporous BiVO4/2D-g-C3N4 heterostructures for superior visible light-driven photocatalytic reduction of Hg (II) ions. Ceram. Intern. 47, 26063–26073 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the management of S‘O’A (Deemed to be university), Bhubaneswar for encouraging to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acharya, R., Mishra, S., Acharya, L., Parida, K. (2023). Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications. In: Kumar, N., Gusain, R., Sinha Ray, S. (eds) Two-Dimensional Materials for Environmental Applications. Springer Series in Materials Science, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-031-28756-5_4

Download citation

Publish with us

Policies and ethics