Skip to main content

Super Twisting Sliding Mode Controller for Trajectory Tracking Control of Autonomous Ground Vehicle System

  • Conference paper
  • First Online:
Artificial Intelligence and Digitalization for Sustainable Development (ICAST 2022)

Abstract

Day to day increase in demand of safe and accident free ground vehicle, rapid growth and development of artificial intelligence algorithms and also rapid growth of microelectronics technology are major motives that are driving the development and increased attention of Autonomous Ground Vehicle (AGV) systems. Unstable and non-linear features of AGV need robust control techniques to control the trajectory tracking tasks of the system. Review of related works summery shows that sliding mode controller can handle non-linearity and relatively assure robustness of the system. However; ripple is one of the most common challenge in sliding mode controllers. In this research, Super Twisting Sliding Mode controller (STSMC) is designed to resolve the ripple in sliding mode controller for trajectory tracking control of AGV. Optimal parameters of STSMC controller are tuned using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) technique. To compare the performance of the proposed algorithm, GA tuned Fractional-Order-PID (FOPID) controller is also designed and implemented. Accordingly, STSMC has less (≈0.0006 s) tracking error than FOPID controller. The result reveals the outperformance of the proposed algorithm over FOPID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amer, N.H., Zamzuri, H., Hudha, K., Kadir, Z.A.: Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges. J. Intell. Rob. Syst. 86(2), 225–254 (2016). https://doi.org/10.1007/s10846-016-0442-0

    Article  Google Scholar 

  2. Chen, Q.: Studies in Autonomous Ground Vehicle Control Systems : Structure and Algorithms (2007)

    Google Scholar 

  3. Yousif, N., et al.: Control system design for autonomous vehicle path following and collision avoidance dissertation. J. Phys. Ther. Sci. 9(1), 1–11 (2018). https://doi.org/10.1016/j.neuropsychologia.2015.07.010%0A. https://doi.org/10.1016/j.visres.2014.07.001%0A. https://doi.org/10.1016/j.humov.2018.08.006%0A. http://www.ncbi.nlm.nih.gov/pubmed/24582474%0A. https://doi.org/10.1016/j.gaitpost.2018.12.007%0A

  4. Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009). https://doi.org/10.1016/j.conengprac.2009.07.005

    Article  Google Scholar 

  5. Peng, J., Yu, J., Wang, J.: Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties. ISA Trans. 53(4), 1035–1043 (2014). https://doi.org/10.1016/j.isatra.2014.05.012

    Article  Google Scholar 

  6. Zhang, Y., Liu, G., Luo, B.: Finite-time cascaded tracking control approach for mobile robots. Inf. Sci. (Ny) 284, 31–43 (2014). https://doi.org/10.1016/j.ins.2014.06.037

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhuo-Yun, N., Yi-Min, Z., Qing-Guo, W., Rui-Juan, L., Lei-Jun, X.: Fractional-order PID controller design for time-delay systems based on modified bode’s ideal transfer function. IEEE Access 8, 103500–103510 (2020). https://doi.org/10.1109/ACCESS.2020.2996265

    Article  Google Scholar 

  8. Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J., Camacho, E.F.: Mobile robot path tracking using a robust PID controller. Control Eng. Pract. 9(11), 1209–1214 (2001). https://doi.org/10.1016/S0967-0661(01)00066-1

    Article  Google Scholar 

  9. Lee, C.H., Chang, F.K.: Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Syst. Appl. 37(12), 8871–8878 (2010). https://doi.org/10.1016/j.eswa.2010.06.009

    Article  Google Scholar 

  10. Zhao, P., Chen, J., Song, Y., Tao, X., Xu, T., Mei, T.: Design of a control system for an autonomous vehicle based on adaptive-PID. Int. J. Adv. Robot. Syst. 9, 1–11 (2012). https://doi.org/10.5772/51314

    Article  Google Scholar 

  11. García-Sánchez, J.R., et al.: Tracking control for mobile robots considering the dynamics of all their subsystems: experimental implementation. Complexity 2017 (2017). https://doi.org/10.1155/2017/5318504

  12. Maiti, D., Biswas, S., Konar, A.: Design of a fractional order PID controller using particle swarm optimization technique. ReTIS-08, pp. 1–5 (2008). http://arxiv.org/abs/0810.3776

  13. Hoang, V.T., Pham, Q.H.: Adaptive super-twisting second-order sliding mode for attitude control of quadcopter UAVs. arXiv (2018)

    Google Scholar 

  14. Zhao, B., Wang, H., Li, Q., Li, J., Zhao, Y.: PID trajectory tracking control of autonomous ground vehicle based on genetic algorithm. In: Proceedings of the 31st Chinese Control Decision Conference, CCDC 2019, pp. 3677–3682 (2019). https://doi.org/10.1109/CCDC.2019.8832531

  15. Dadras, S.: Path tracking using fractional order extremum seeking controller for autonomous ground vehicle. SAE Technical Paper, vol. 2017-March, no. March (2017). https://doi.org/10.4271/2017-01-0094

  16. Gambhire, S.J., Kishore, D.R., Londhe, P.S., Pawar, S.N.: Review of sliding mode based control techniques for control system applications. Int. J. Dyn. Control 9(1), 363–378 (2020). https://doi.org/10.1007/s40435-020-00638-7

    Article  MathSciNet  Google Scholar 

  17. Alam, W., Mehmood, A., Ali, K., Javaid, U., Alharbi, S., Iqbal, J.: Nonlinear control of a flexible joint robotic manipulator with experimental validation. J. Mech. Eng. 64(1), 47–55 (2018). https://doi.org/10.5545/sv-jme.2017.4786

    Article  Google Scholar 

  18. Hu, J., Zhang, Y., Rakheja, S.: Adaptive trajectory tracking for car-like vehicles with input constraints. IEEE Trans. Ind. Electron. 0046(c) (2021). https://doi.org/10.1109/TIE.2021.3068672

  19. Wu, Y., Wang, L., Zhang, J., Li, F.: Path following control of autonomous ground vehicle based on nonsingular terminal sliding mode and active disturbance rejection control. IEEE Trans. Veh. Technol. 68(7), 6379–6390 (2019). https://doi.org/10.1109/TVT.2019.2916982

    Article  Google Scholar 

  20. Dai, M., Qi, R., Cheng, X.: Super-twisting sliding mode control design for electric dynamic load simulator. In: Chinese Control Conference, CCC, vol. 2019-July, no. 1, pp. 3078–3083 (2019). https://doi.org/10.23919/ChiCC.2019.8865725

  21. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding mode control and observation (2014)

    Google Scholar 

  22. Al-Mayyahi, A., Wang, W., Birch, P.: Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle. J. Control Autom. Electr. Syst. 27(1), 29–42 (2015). https://doi.org/10.1007/s40313-015-0214-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiru Takele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takele, T., Terefe, T., Ma, S.S. (2023). Super Twisting Sliding Mode Controller for Trajectory Tracking Control of Autonomous Ground Vehicle System. In: Woldegiorgis, B.H., Mequanint, K., Bitew, M.A., Beza, T.B., Yibre, A.M. (eds) Artificial Intelligence and Digitalization for Sustainable Development. ICAST 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-031-28725-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28725-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28724-4

  • Online ISBN: 978-3-031-28725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics