Skip to main content

Convergence Rates of a Finite Difference Method for the Fractional Subdiffusion Equations

  • Conference paper
  • First Online:
Differential Equations, Mathematical Modeling and Computational Algorithms (DEMMCA 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 423))

  • 184 Accesses

Abstract

We consider the convergence of an effective numerical method of the subdiffusion equation with the Caputo fractional derivative in time. We investigate an implicit difference scheme and an explicit difference scheme by using the projection method in space and a finite difference method which was proposed by Ashyralyev in time. Combining the method of functional analysis and the technique of numerical analysis, we utilize the idea of layering in temporal direction to obtain that the local truncation error is \(O(n^{-\alpha })\). Then we prove that the implicit and explicit numerical methods converge at a rate of \(O(\tau ^\alpha )\) in time. Finally, a numerical experiment is given to confirm the \(\alpha \)-th order accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resour Res 28(12):3293–3307. https://doi.org/10.1029/92WR01757

    Article  Google Scholar 

  2. Alikhanov AA (2015) A new difference scheme for the time fractional diffusion equation. J Comput Phys 280:424–438. https://doi.org/10.1016/j.jcp.2014.09.031

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashyralyev A (2009) A note on fractional derivatives and fractional powers of operators. J Math Anal Appl 357(1):232–236. https://doi.org/10.1016/j.jmaa.2009.04.012

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashyralyev A, Cuevas C, Piskarev S (2008) On well-posedness of difference schemes for abstract elliptic problems in \(L^p([0, T];E)\) spaces. Numer Funct Anal Optim 29(1–2):43–65. https://doi.org/10.1080/01630560701872698

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashyralyev A, Emirov N, Cakir Z (2014) Well-posedness of fractional parabolic differential and difference equations with Dirichlet-Neumann conditions. Electron J Differ Equ 2014(97):1–17. https://ejde.math.txstate.edu/

  6. Ashyralyev A, Hicdurmaz B (2020) Bounded solutions of second order of accuracy difference schemes for semilinear fractional schrödinger equations. Fract Calc Appl Anal 23(6):1723–1761. https://doi.org/10.1515/fca-2020-0086

    Article  MathSciNet  MATH  Google Scholar 

  7. Ashyralyev A, Piskarev S, Weis L (2002) On well-posedness of difference schemes for abstract parabolic equations in \(L^p([0, T];E)\) spaces. Numer Funct Anal Optim 23(7–8):669–693. https://doi.org/10.1081/NFA-120016264

    Article  MathSciNet  MATH  Google Scholar 

  8. Bajlekova E (2001) Fractional evolution equations in banach spaces. Eindhoven University of Technology, Dissertation, Eindhoven

    Google Scholar 

  9. Cao J, Li C, Chen Y (2015) Compact difference method for solving the fractional reaction-subdiffusion equation with Neumann boundary value condition. Int J Comput Math 92(1):167–180. https://doi.org/10.1080/00207160.2014.887702

    Article  MathSciNet  MATH  Google Scholar 

  10. Carvalho AN, Piskarev S (2006) A general approximation scheme for attractors of abstract parabolic problems. Numer Funct Anal Optim 27(7–8):785–829. https://doi.org/10.1080/01630560600882723

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuesta E, Lubich C, Palencia C (2006) Convolution quadrature time discretization of fractional diffusion-wave equations. Math Comp 75:673–696. https://doi.org/10.1090/S0025-5718-06-01788-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen H, Holland F, Stynes M (2019) An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions. Appl Numer Math 139:52–61. https://doi.org/10.1016/j.apnum.2019.01.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen H, Stynes M (2019) Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J Sci Comput 79:624–647. https://doi.org/10.1007/s10915-018-0863-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Diethelm K (2010) The analysis of fractional differential equations, vol 2004. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  15. Dixon J (1985) On the order of the error in discretization methods for weakly singular second kind non-smooth solutions. BIT 25(4):623–634. https://doi.org/10.1007/BF01936141

    Article  Google Scholar 

  16. Gao G, Sun Z, Zhang H (2014) A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys 259:33–50. https://doi.org/10.1016/j.jcp.2013.11.017

    Article  MathSciNet  MATH  Google Scholar 

  17. Hatano Y, Hatano N (1998) Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour Res 34(5):1027–1033. https://doi.org/10.1029/98WR00214

    Article  Google Scholar 

  18. Huang J, Zhang J, Arshad S, Tang Y (2021) A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. Appl Numer Math 159:159–173. https://doi.org/10.1016/j.apnum.2020.09.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang J, Zhao Y, Arshad S, Li K, Tang Y (2018) Alternating direction implicit schemes for the two-dimensional time fractional nonlinear super-diffusion equations. J Comp Math 37(3):297–315. https://doi.org/10.4208/jcm.1802-m2017-0196

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin B, Li B, Zhou Z (2017) Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J Sci Comput 39(6):A3129–A3152. https://doi.org/10.1137/17m1118816

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin B, Li B, Zhou Z (2018) Numerical analysis of nonlinear subdiffusion equations. SIAM J Numer Anal 56(1):1–23. https://doi.org/10.1137/16m1089320

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin B, Li B, Zhou Z (2020) Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping. Numer Math 145(4):883–913. https://doi.org/10.1007/s00211-020-01130-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland mathematics studies, vol 204. Elsevier Science B.V., Amsterdam

    Google Scholar 

  24. Lubich Ch (1986) Discretized fractional calculus. SIAM J Math Anal 17(3):704–719. https://doi.org/10.1137/0517050

    Article  MathSciNet  MATH  Google Scholar 

  25. Li M, Chen C, Li F (2010) On fractional powers of generators of fractional resolvent families. J Funct Anal 259:2702–2726. https://doi.org/10.1016/j.jfa.2010.07.007

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu L, Fan Z, Li G, Piskarev S (2019) Maximal regularity for fractional Cauchy equation in Höder space and its approximation. Comput Methods Appl Math 19(4):779–796. https://doi.org/10.1515/cmam-2018-0185

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu L, Fan Z, Li G, Piskarev S (2021) Discrete almost maximal regularity and stability for fractional differential equations in \(L^p([0,1],\Omega )\). Appl Math Comput 389:125574. https://doi.org/10.1016/j.amc.2020.125574

    Article  MATH  Google Scholar 

  28. Li C, Li M (2018) Hölder regularity for abstract fractional Cauchy problems with order in \((0,1)\). J Appl Math Phys 6:310–319. https://doi.org/10.4236/jamp.2018.61030

    Article  Google Scholar 

  29. Liu R, Li M, Piskarev S (2015) Approximation of semilinear fractional Cauchy problem. Comput Methods Appl Math 15(2):203–212. https://doi.org/10.1515/cmam-2015-0001

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu R, Li M, Piskarev S (2015) Stability of difference schemes for fractional equations. J Differ Equ 51(7):904–924. https://doi.org/10.1134/S0012266115070095

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu R, Li M, Piskarev S (2017) The order of convergence of difference schemes for fractional equations. Numer Funct Anal Optim 38(6):754–769. https://doi.org/10.1080/01630563.2017.1297825

    Article  MathSciNet  MATH  Google Scholar 

  32. Li Y, Sun H, Feng Z (2016) Fractional abstract Cauchy problem with order \(\alpha \in (1,2)\). Dyn Partial Differ Equ 13:155–177. https://doi.org/10.4310/DPDE.2016.v13.n2.a4

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001

    Article  MathSciNet  MATH  Google Scholar 

  34. Macrobert TM (1955) Higher transcendental functions. Nature 175:317–317. https://doi.org/10.1038/175317a0

    Article  Google Scholar 

  35. Meerschaert M, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77. https://doi.org/10.1016/j.cam.2004.01.033

    Article  MathSciNet  MATH  Google Scholar 

  36. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77. https://doi.org/10.1016/S0370-1573(00)00070-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Status Solidi (b) 133(1):425–430. https://doi.org/10.1002/pssb.2221330150

    Article  MathSciNet  Google Scholar 

  38. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  39. Podlubny I (1999) Fractional differential equations. In: Conference: mathematics in science and engineering. vol 198, Academic Press, San Diego

    Google Scholar 

  40. Piskarev S (1979) Approximation of holomorphic semigroup. Tartu Riikl Ül Toimetised 3–14

    Google Scholar 

  41. Piskarev S, Siegmund S (2019) Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations. Nonlinear Dyn 95(1):685–697. https://doi.org/10.1007/s11071-018-4590-6

    Article  MATH  Google Scholar 

  42. Stynes M, O’Riordan E, Gracia JL (2017) Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J Numer Anal 55(2):1057–1079. https://doi.org/10.1137/16M1082329

    Article  MathSciNet  MATH  Google Scholar 

  43. Sakamoto K, Yamamoto M (2011) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl 382(1):426–447. https://doi.org/10.1016/j.jmaa.2011.04.058

    Article  MathSciNet  MATH  Google Scholar 

  44. Vainikko G (1978) Approximative methods for nonlinear equations (two approaches to the convergence problem). Nonlinear Anal 2(6):647–687. https://doi.org/10.1016/0362-546X(78)90013-5

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeng F, Li C, Liu F, Turner I (2013) The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J Sci Comput 35(6):A2976–A3000. https://doi.org/10.1137/130910865

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang J, Aleroev TS, Tang Y, Huang J (2021) Numerical schemes for time-space fractional vibration equations. Adv Appl Math Mech 13(4):806–826

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11571300 and 11871064) and the Russian Science Foundation (Grant No. N20-11-20085, 23-21-00005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Piskarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Fan, Z., Li, G., Piskarev, S. (2023). Convergence Rates of a Finite Difference Method for the Fractional Subdiffusion Equations. In: Vasilyev, V. (eds) Differential Equations, Mathematical Modeling and Computational Algorithms. DEMMCA 2021. Springer Proceedings in Mathematics & Statistics, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-031-28505-9_7

Download citation

Publish with us

Policies and ethics