Skip to main content

Materials for Space Astronaut Service Robots

  • Conference paper
  • First Online:
Design Advances in Aerospace Robotics (TORVEASTRO 2023)

Abstract

The importance of materials selection for advanced space applications is mainly due to the harsh space environment; indeed, high thermal gradients, several cosmic radiations, vacuum as well as orbital debris are just some of the factors that must be considered while dealing with in-space applications. An interesting application is the astronaut service robot. International space agencies all over the world are moving toward the extensive use of such robots to perform extravehicular activities (EVA) on orbiting space station, as in the International Space Station (ISS). Traditional structural materials such as Aluminum and Titanium alloys and steels are the most reliable solutions for this kind of applications, while copper-based alloys are more suitable for the manufacturing of electrical and electronic parts. More recently, advanced materials such as polymer-matrix-composites (PMC) have been used to fabricate space components, mainly to decrease the payload of the entire structure: moreover, thin polymeric layers can be used for shielding purposes. In this work, both traditional and innovative materials are presented as possible solutions for new astronaut robots manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akin, D., Sullivan, B.: A survey of serviceable spacecraft failures. In: AIAA Space 2001 Conference and Exposition. Albuquerque 4540 (2001)

    Google Scholar 

  2. Li, W.J., Cheng, D.Y., Liu, X.G., et al.: On-orbit service (OOS) of spacecraft: a review of engineering developments. Prog. Aerospace Sci 108, 32–120 (2019)

    Article  Google Scholar 

  3. Liu, H.: An overview of the space robotics progress in China. In: Proceedings of the International Symposium on Artificial Intelligence Robotics and Automation in Space, pp. 15–20. Montreal (2014)

    Google Scholar 

  4. Bekey, G.A., Ambrose, R., Kumar, V., et al.: Robotics: State of the Art and Future Challenges. Imperial College Press, London (2008)

    Book  Google Scholar 

  5. Holt, D.E.H., Holt, D.: Materials technology for aerospace applications. Mater. Des. 6(1), 18–24 (1985)

    Article  Google Scholar 

  6. Kandasamy, J., Kar, V.R., Sultan, M.T.H., Murugan, R.: Materials selection for aerospace components. In: Sustainable Composites for Aerospace Applications (Chapter 1) pp. 1–18 (2018)

    Google Scholar 

  7. Louthan M.R.: Materials degradation in space environment. AIAA Special Rep. No. 5 (1980)

    Google Scholar 

  8. Chen, J., Ding, N., Li, Z., Wang, W.: Organic polymer materials in the space environment. Prog. Aerosp. Sci. 83, 37–56 (2016)

    Article  Google Scholar 

  9. Chancellor, J.C., Blue, R.S., Cengel, K.A., Aunon-Chancellor, S.M., Rubins, K.H., Katzgraber, H.G., Kennedy, A.R.: Limitations in predicting the space radiation health risk for exploration astronauts. npj Microgravity 8 (2018)

    Google Scholar 

  10. Holmes-Siedle, A., Adams, L.: Handbook of Radiation Effects. Oxford University Press (1993)

    Google Scholar 

  11. Sajid, M., Chechenin, N.G., Torres, F.S., Khan, E.U., Agha, S.: Space radiation environment prediction for VLSI microelectronics devices onboard a LEO satellite using OMERE-TRAD software. Adv. Space Res. 56(2), 314–324 (2015)

    Article  Google Scholar 

  12. Han, J.H., Kim, C.G.: Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Compos. Struct. 72, 218–226 (2006)

    Article  Google Scholar 

  13. Reddy, M.R.: Effect of low earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci. 30, 281–307 (1995)

    Article  Google Scholar 

  14. Gover, J.E.: In: IEEE 1980 Annual Conference on Nuclear and Space Radiation Effects, Cornell University, Ithaca, NY, 15–18 July 1980

    Google Scholar 

  15. Cament, L., Adams, M., Barrios, P.: Space debris tracking with the poisson labeled multi-bernoulli filter. Sensors 21, 3684 (2021)

    Article  Google Scholar 

  16. Bhat, B.N.: Aerospace materials and applications (2018). https://doi.org/10.2514/4.104893

  17. http://stardust.jpl.nasa.gov/news/vision.html

  18. Ann, F., Young, W., Young, L.: An overview of the first results on the solar array materials passive LDEF Experiment (Sample), AO171. In: LDEF First Post-Retrieval Symposium, NASA CP-3134, June 1991

    Google Scholar 

  19. Stein, B.: LDEF materials: an overview of the interim findings. In: LDEF Materials Workshop, NASA CP-3162, Nov 1991

    Google Scholar 

  20. Finckenor, M., Pippin, H.G., Frey, G.: MISSE thermal control materials with comparison to previous flight experiments. In: 9th International Space Conference—Protection of Materials and Structures from the LEO Space Environment, Toronto, Canada, 20–23 May 2008

    Google Scholar 

  21. Properties and selection: nonferous alloys and special purpose materials, vol. 2. ASM Handbook (1992)

    Google Scholar 

  22. Avella, M., Dell’erba, R., Martuscelli, E., Partch, R.: Thermosetting based composites reinforced with silicon carbide whiskers. J. Polym. Mater. 17(4), 445–458 (2000)

    Google Scholar 

  23. Hao, Y., Zhang, S., Fang, B., Sun, F., Liu, H., Li, H.: A Review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chin. J. Mech. Eng. 35(1), 1–16 (2022). https://doi.org/10.1186/s10033-022-00707-2

    Article  Google Scholar 

  24. Quadrini, F., Iorio, L., Bellisario, D., Santo, L.: Shape memory polymer composite unit with embedded heater. Smart Mater. Struct. 30 (2021)

    Google Scholar 

  25. Santo, L., Quadrini, F., Ganga, P.L., Zolesi, V.: Mission BION-M1: results of Ribes/Foam2 experiment on shape memory polymer foams and composites. Aerosp. Sci. Technol. 40, 109–114 (2015)

    Google Scholar 

  26. Santo, L., Quadrini, F., Bellisario, D., De Groh, K.K.: Shape memory polymer composites and cosmic ray shielding materials in open space. In: Proceedings of the Applied Space Environments Conference (ASEC), Los Angeles, 13–17 May 2019

    Google Scholar 

  27. Doetsch, K.H., et al.: https://www.thecanadianencyclopedia.ca/en/article/canadarm

  28. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_Station/European_Robotic_Arm

  29. https://mars.nasa.gov/mars2020/spacecraft/rover/

  30. Araque-Isidro, J.E., Cafolla, D., Ceccarelli, M.: Problems and requirements for outer space astronaut service robot mechanisms and machine science. In: MMS, vol. 122, pp. 603–611 (2022)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by grant Lazioinnova-POR214–2020-A0375–2020-36517 for the project TORVEASTRO that is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Iorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iorio, L., Proietti, A., Quadrini, F., Santo, L. (2023). Materials for Space Astronaut Service Robots. In: Ceccarelli, M., Santo, L., Paoloni, M., Cupertino, G. (eds) Design Advances in Aerospace Robotics. TORVEASTRO 2023. Mechanisms and Machine Science, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-031-28447-2_8

Download citation

Publish with us

Policies and ethics