Skip to main content

Exploring Deep Learning Methods for Classification of Synthetic Aperture Radar Images: Towards NextGen Convolutions via Transformers

  • Conference paper
  • First Online:
Advanced Network Technologies and Intelligent Computing (ANTIC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1798))

Abstract

The Images generated by high-resolution Synthetic Aperture Radar (SAR) have vast areas of application as they can work better in adverse light and weather conditions. One such area of application is in the military systems. This study is an attempt to explore the suitability of current state-of-the-art models introduced in the domain of computer vision for SAR target classification (Moving and Stationary Target Acquisition and Recognition (MSTAR)). Since the application of any solution produced for military systems would be strategic and real-time, accuracy is often not the only criterion to measure its performance. Other important parameters like prediction time and input resiliency are equally important. The paper deals with these issues in the context of SAR images. Experimental results show that deep learning models can be suitably applied in the domain of SAR image classification with the desired performance levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Https://www.sdms.afrl.af.mil/index.php?collection=mstar.

  2. 2.

    Https://www.sandia.gov/.

References

  1. Thiagarajan, J.J., Ramamurthy, K.N., Knee, P., Spanias, A., Berisha, V.: Sparse representations for automatic target classification in SAR images. In: 2010 4th International Symposium on Communications, Control And Signal Processing (ISCCSP), pp. 1–4. IEEE (2010, March)

    Google Scholar 

  2. Mehra, R.K., Ravichandran, R.B., Srivastava, A.: MSTAR target classification using Bayesian pattern theory. In: Algorithms for Synthetic Aperture Radar Imagery V, vol. 3370, pp. 675–684. SPIE (1998)

    Google Scholar 

  3. Bryant, M. L., Garber, F. D.: SVM classifier applied to the MSTAR public data set. In: Algorithms for Synthetic Aperture Radar Imagery VI, vol. 3721, pp. 355–360. SPIE (1999)

    Google Scholar 

  4. Zhao, Q., Principe, J.C.: Support vector machines for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 37(2), 643–654 (2001)

    Article  Google Scholar 

  5. Yang, Y., Qiu, Y., Lu, C.: Automatic target classification-experiments on the MSTAR SAR images. In: Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Network, pp. 2–7. IEEE. (2005)

    Google Scholar 

  6. Profeta, A., Rodriguez, A., Clouse, H.S.: Convolutional neural networks for synthetic aperture radar classification. In: Algorithms for Synthetic Aperture Radar Imagery XXIII, vol. 9843, pp. 185–194. SPIE (2016)

    Google Scholar 

  7. Coman, C.: A deep learning sar target classification experiment on mstar dataset. In: 2018 19th International Radar Symposium (IRS), pp. 1–6. IEEE. (2018)

    Google Scholar 

  8. Weiss, G. M., Provost, F.: The Effect of Class Distribution on Classifier Learning: An Empirical Study. Rutgers University (2001)

    Google Scholar 

  9. Kolesnikov, A., et al.: Big transfer (bit): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds.) European Conference on Computer Vision, LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29

  10. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  11. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K. Q.: Densely connected convolutional networks, vol. 1608. arXiv 2016. arXiv preprint arXiv:1608.06993, (2018)

  12. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  13. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  14. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  16. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  17. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  18. Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., Ridella, S.: The ‘K’in K-fold cross validation. In: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp. 441–446. i6doc. com publ. (2012)

    Google Scholar 

  19. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)

    Google Scholar 

  20. Liu, L., et al.: On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)

Download references

Acknowledgements

This work is partly supported by extramural research grant from Ministry of Electronics and Information Technology, Govt. of India (grant no: 3(9)/2021-EG-II) and by HPE Aruba Centre for Research in Information Systems at BHU (No. M-22-69 of BHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aakash Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A., Singh, V.K. (2023). Exploring Deep Learning Methods for Classification of Synthetic Aperture Radar Images: Towards NextGen Convolutions via Transformers. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds) Advanced Network Technologies and Intelligent Computing. ANTIC 2022. Communications in Computer and Information Science, vol 1798. Springer, Cham. https://doi.org/10.1007/978-3-031-28183-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28183-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28182-2

  • Online ISBN: 978-3-031-28183-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics