Skip to main content

Triboelectric Nanogenerator as Wearable Sensing Devices

  • Reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 884 Accesses

Abstract

Triboelectric wearable devices provide an alternative pathway to exploit various physical, chemical, and biological sensors to acquire physiological (physical and/or chemical) information, in a real-time, self-powered, and noninvasive manner. In this chapter, different materials and various forms of triboelectric wearable devices are first examined. With material development, these devices possess improved stretchability and robustness and are distributed in different body positions for human status tracking. Integrated diversified components such as power source, processor, and wireless module are conceptualized to realize a more portable and full-function sensing system. Next, the discussion on wearable sensing devices is extended to large-scale triboelectric sensing devices in terms of smart home applications with the aid of artificial intelligence. Next-generation wearable sensors that enable the multimodal or multiplexed measurement of physical parameters and biochemical markers could be a transformative technology for comprehensive understanding of a complex system by leveraging more advanced artificial intelligence algorithms for multimodal sensory information decoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anaya DV, He T, Lee C, Yuce MR (2020) Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies. Nano Energy 72:104675

    Article  Google Scholar 

  • Bhatia D, Lee K-S, Niazi MUK, Park H-S (2022) Triboelectric nanogenerator integrated origami gravity support device for shoulder rehabilitation using exercise gaming. Nano Energy 97:107179

    Article  CAS  Google Scholar 

  • Chen C-H, Lee P-W, Tsao Y-H, Lin Z-H (2017) Utilization of self-powered electrochemical systems: metallic nanoparticle synthesis and lactate detection. Nano Energy 42:241–248

    Article  CAS  Google Scholar 

  • Chen Y, Lei H, Gao Z, Liu J, Zhang F, Wen Z, Sun X (2022) Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy 98:107273

    Article  CAS  Google Scholar 

  • Chu H, Jang H, Lee Y, Chae Y, Ahn J-H (2016) Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy 27:298–305

    Article  CAS  Google Scholar 

  • Cui S, Zheng Y, Zhang T, Wang D, Zhou F, Liu W (2018) Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 49:31–39

    Article  CAS  Google Scholar 

  • Dai X, Huang LB, Du Y, Han J, Zheng Q, Kong J, Hao J (2020) Self-healing, flexible, and tailorable triboelectric nanogenerators for self-powered sensors based on thermal effect of infrared radiation. Adv Funct Mater 30(16):1910723

    Article  CAS  Google Scholar 

  • Deng H-T, Zhang X-R, Wang Z-Y, Wen D-L, Ba Y-Y, Kim B, Han M-D, Zhang H-X, Zhang X-S (2021) Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy 83:105823

    Article  CAS  Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334

    Article  CAS  Google Scholar 

  • Fang Y, Xu J, Xiao X, Zou Y, Zhao X, Zhou Y, Chen J (2022) Deep learning assisted on-mask sensor network for adaptive respiratory monitoring. Advanced Materials:2200252

    Google Scholar 

  • Feng Y, Huang X, Liu S, Guo W, Li Y, Wu H (2019) A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring. Nano Energy 62:197–204

    Article  CAS  Google Scholar 

  • Gao S, He T, Zhang Z, Ao H, Jiang H, Lee C (2021) A motion capturing and energy harvesting hybridized lower-limb system for rehabilitation and sports applications. Adv Sci 8(20):2101834

    Article  Google Scholar 

  • Gunawardhana KRSD, Wanasekara ND, Dharmasena RDIG (2020) Towards truly wearable systems: optimizing and scaling up wearable triboelectric nanogenerators. Iscience 23(8):101360

    Article  CAS  Google Scholar 

  • Guo H, Pu X, Chen J, Meng Y, Yeh M-H, Liu G, Tang Q, Chen B, Liu D, Qi S (2018a) A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics 3(20):eaat2516

    Article  Google Scholar 

  • Guo H, Pu X, Chen J, Meng Y, Yeh M-H, Liu G, Tang Q, Chen B, Liu D, Qi S (2018b) A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci Robot 3(20)

    Google Scholar 

  • He T, Wang H, Wang J, Tian X, Wen F, Shi Q, Ho JS, Lee C (2019a) Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Advanced Science 6(24):1901437

    Article  CAS  Google Scholar 

  • He T, Shi Q, Wang H, Wen F, Chen T, Ouyang J, Lee C (2019b) Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile. Nano Energy 57:338–352

    Article  CAS  Google Scholar 

  • Jiang W, Li H, Liu Z, Li Z, Tian J, Shi B, Zou Y, Ouyang H, Zhao C, Zhao L (2018) Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv Mater 30(32):1801895

    Article  Google Scholar 

  • Jiang D, Ouyang H, Shi B, Zou Y, Tan P, Qu X, Chao S, Xi Y, Zhao C, Fan Y (2020) A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics. InfoMat 2(6):1191–1200

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang Y, Ning C, Ji Q, Peng X, Dong K, Wang ZL (2022) Ultrathin Eardrum-inspired self-powered acoustic sensor for vocal synchronization recognition with the assistance of machine learning. Small 18(13):2106960

    Article  CAS  Google Scholar 

  • Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X, Wang ZL (2015) Self-powered triboelectric nanosensor with poly (tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 9(8):8376–8383

    Article  CAS  Google Scholar 

  • Kiew SF, Kiew LV, Lee HB, Imae T, Chung LY (2016) Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Control Release 226:217–228

    Article  CAS  Google Scholar 

  • Lai YC, Wu HM, Lin HC, Chang CL, Chou HH, Hsiao YC, Wu YC (2019) Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv Funct Mater 29(40):1904626

    Article  Google Scholar 

  • Li C, Liu D, Xu C, Wang Z, Shu S, Sun Z, Tang W, Wang ZL (2021) Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat Commun 12(1):1–11

    Google Scholar 

  • Liang Q, Zhang Q, Yan X, Liao X, Han L, Yi F, Ma M, Zhang Y (2017) Recyclable and green triboelectric nanogenerator. Adv Mater 29(5):1604961

    Article  Google Scholar 

  • Lin ZH, Zhu G, Zhou YS, Yang Y, Bai P, Chen J, Wang ZL (2013) A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem 125(19):5169–5173

    Article  Google Scholar 

  • Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J (2018) Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater 28:1704112

    Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  Google Scholar 

  • Liu H, Ji Z, Xu H, Sun M, Chen T, Sun L, Chen G, Wang Z (2017) Large-scale and flexible self-powered triboelectric tactile sensing array for sensitive robot skin. Polymers 9:586

    Google Scholar 

  • Liu T, Liu M, Dou S, Sun J, Cong Z, Jiang C, Du C, Pu X, Hu W, Wang ZL (2018a) Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 12(3):2818–2826

    Article  CAS  Google Scholar 

  • Liu Y, Zhu Y, Liu J, Zhang Y, Liu J, Zhai J (2018b) Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogenerator. Nanoscale Res Lett 13:191

    Google Scholar 

  • Liu G, Nie J, Han C, Jiang T, Yang Z, Pang Y, Xu L, Guo T, Bu T, Zhang C (2018c) Self-powered electrostatic adsorption face mask based on a triboelectric nanogenerator. ACS Appl Mater Interfaces 10(8):7126–7133

    Article  CAS  Google Scholar 

  • Liu X, Liu J, Lin S, Zhao X (2020) Hydrogel machines. Mater Today 36:102–124

    Article  CAS  Google Scholar 

  • Liu L, Guo X, Liu W, Lee C (2021) Recent progress in the energy harvesting technology—from self-powered sensors to self-sustained IoT, and new applications. Nano 11(11):2975

    CAS  Google Scholar 

  • Lu Y, Tian H, Cheng J, Zhu F, Liu B, Wei S, Ji L, Wang ZL (2022) Decoding lip language using triboelectric sensors with deep learning. Nat Commun 13:1401

    Google Scholar 

  • Ning C, Dong K, Cheng R, Yi J, Ye C, Peng X, Sheng F, Jiang Y, Wang ZL (2021) Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater 31(4):2006679

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D-e, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, Zhao L, Shi B, Fan Y, Fan Y (2017) Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv Mater 29(40):1703456

    Article  Google Scholar 

  • Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee PS (2017) Highly transparent, stretchable, and self-healing ionic-skin triboelectric nanogenerators for energy harvesting and touch applications. Adv Mater 29(37):1702181

    Article  Google Scholar 

  • Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL (2017a) Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv 3(7):e1700694

    Article  Google Scholar 

  • Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017b) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015

    Article  Google Scholar 

  • Qin K, Chen C, Pu X, Tang Q, He W, Liu Y, Zeng Q, Liu G, Guo H, Hu C (2021) Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett 13:51

    Google Scholar 

  • Qin Y, Mo J, Liu Y, Zhang S, Wang J, Fu Q, Wang S, Nie S (2022) Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv Func Mater 2201846

    Google Scholar 

  • Ren Y, Guo J, Liu Z, Sun Z, Wu Y, Liu L, Yan F (2019) Ionic liquid–based click-ionogels. Sci Adv 5(8):eaax0648

    Article  CAS  Google Scholar 

  • Rong Q, Lei W, Liu M (2018) Conductive hydrogels as smart materials for flexible electronic devices. Chem Eur J 24(64):16930–16943

    Article  CAS  Google Scholar 

  • Shi Q, Zhang Z, Chen T, Lee C (2019) Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 62:355–366

    Article  CAS  Google Scholar 

  • Shi Q, Zhang Z, He T, Sun Z, Wang B, Feng Y, Shan X, Salam B, Lee C (2020) Deep learning enabled smart mats as a scalable floor monitoring system. Nat Commun 11:4609

    Google Scholar 

  • Shi Q, Sun Z, Zhang Z, Lee C (2021a) Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications. Research 2021

    Google Scholar 

  • Shi Q, Zhang Z, Yang Y, Shan X, Salam B, Lee C (2021b) Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 15(11):18312–18326

    Article  CAS  Google Scholar 

  • Shi X, Luo J, Luo J, Li X, Han K, Li D, Cao X, Wang ZL (2022) Flexible wood-based triboelectric self-powered smart home system. ACS Nano 16(2):3341–3350

    Article  CAS  Google Scholar 

  • Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K-J, Liu Z, Park H, Lu C, Kim R-H (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99

    Article  CAS  Google Scholar 

  • Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, Gao W (2020) Wireless battery-free wearable sweat sensor powered by human motion. Science. Advances 6(40):eaay9842

    CAS  Google Scholar 

  • Su Y, Zhu G, Yang W, Yang J, Chen J, Jing Q, Wu Z, Jiang Y, Wang ZL (2014) Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 8(4):3843–3850

    Article  CAS  Google Scholar 

  • Sun Z, Zhu M, Shan X, Lee C (2022) Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun 13:5224

    Google Scholar 

  • Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S (2021) Bioinspired multisensory neural network with crossmodal integration and recognition. Nat Commun 12:1120

    Google Scholar 

  • Wang ZL (2015) Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss 176:447–458

    Article  Google Scholar 

  • Wang ZL (2020) Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv Energy Mater 10(17):2000137

    Article  CAS  Google Scholar 

  • Wang J, Wen Z, Zi Y, Zhou P, Lin J, Guo H, Xu Y, Wang ZL (2016) All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Adv Funct Mater 26(7):1070–1076

    Article  CAS  Google Scholar 

  • Wang X, Yin Y, Yi F, Dai K, Niu S, Han Y, Zhang Y, You Z (2017) Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 39:429–436

    Article  CAS  Google Scholar 

  • Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C (2018) A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv Mater 30(12):1706738

    Article  Google Scholar 

  • Wang J, Wang H, Lee C (2019) Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode. Adv Biosyst 3(7):1800281

    Article  Google Scholar 

  • Wang Y, Wu H, Xu L, Zhang H, Yang Y, Wang ZL (2020) Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci Adv 6(34):eabb9083

    Article  CAS  Google Scholar 

  • Wang J, Cui P, Zhang J, Ge Y, Liu X, Xuan N, Gu G, Cheng G, Du Z (2021) A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection. Nano Energy 89:106320

    Article  CAS  Google Scholar 

  • Wang C, Liu Y, Qu X, Shi B, Zheng Q, Lin X, Chao S, Wang C, Zhou J, Sun Y (2022) Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv Mater 34(16):2105416

    Article  CAS  Google Scholar 

  • Wen F, Wang H, He T, Shi Q, Sun Z, Zhu M, Zhang Z, Cao Z, Dai Y, Zhang T (2020) Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 67:104266

    Article  CAS  Google Scholar 

  • Wen F, Zhang Z, He T, Lee C (2021) AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat Commun 12:5378

    Google Scholar 

  • Wu C, Kim TW, Choi HY (2017) Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 32:542–550

    Article  CAS  Google Scholar 

  • Xu W, Huang LB, Wong MC, Chen L, Bai G, Hao J (2017) Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv Energy Mater 7(1):1601529

    Article  Google Scholar 

  • Xu C, Zi Y, Wang AC, Zou H, Dai Y, He X, Wang P, Wang YC, Feng P, Li D (2018) On the electron-transfer mechanism in the contact-electrification effect. Adv Mater 30(15):1706790

    Article  Google Scholar 

  • Yang D, Ni Y, Kong X, Li S, Chen X, Zhang L, Wang ZL (2021) Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9):14653–14661

    Article  CAS  Google Scholar 

  • Yang P, Shi Y, Li S, Tao X, Liu Z, Wang X, Wang ZL, Chen X (2022a) Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano 16(3):4654–4665

    Article  CAS  Google Scholar 

  • Yang Y, Shi Q, Zhang Z, Shan X, Salam B, Lee C (2022b) Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 5:e12360

    Google Scholar 

  • Ye C, Liu D, Peng X, Jiang Y, Cheng R, Ning C, Sheng F, Zhang Y, Dong K, Wang ZL (2021) A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 15(11):18172–18181

    Article  CAS  Google Scholar 

  • Yi F, Wang X, Niu S, Li S, Yin Y, Dai K, Zhang G, Lin L, Wen Z, Guo H (2016) A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci Adv 2(6):e1501624

    Article  Google Scholar 

  • Yin L, Kim KN, Lv J, Tehrani F, Lin M, Lin Z, Moon J-M, Ma J, Yu J, Xu S (2021) A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat Commun 12:1542

    Google Scholar 

  • Yun Y, Jang S, Cho S, Lee SH, Hwang HJ, Choi D (2021) Exo-shoe triboelectric nanogenerator: toward high-performance wearable biomechanical energy harvester. Nano Energy 80:105525

    Article  CAS  Google Scholar 

  • Zhang Z, He T, Zhu M, Sun Z, Shi Q, Zhu J, Dong B, Yuce MR, Lee C (2020) Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. npj Flexi Electron 4(1):1–12

    CAS  Google Scholar 

  • Zhang Q, Jin T, Cai J, Xu L, He T, Wang T, Tian Y, Li L, Peng Y, Lee C (2022) Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT-based smart healthcare applications. Adv Sci 9(4):2103694

    Article  CAS  Google Scholar 

  • Zhao Z, Yan C, Liu Z, Fu X, Peng LM, Hu Y, Zheng Z (2016) Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater 28(46):10267–10274

    Article  CAS  Google Scholar 

  • Zhou D, Chen F, Handschuh-Wang S, Gan T, Zhou X, Zhou X (2019) Biomimetic extreme-temperature-and environment-adaptable hydrogels. ChemPhysChem 20(17):2139–2154

    Article  CAS  Google Scholar 

  • Zhou Z, Weng L, Tat T, Libanori A, Lin Z, Ge L, Yang J, Chen J (2020) Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 14(10):14126–14133

    Article  CAS  Google Scholar 

  • Zhou L, Liu D, Ren L, Xue H, Li B, Niu S, Liu Q, Han Z, Ren L (2022) Reconfigurable fiber triboelectric nanogenerator for self-powered defect detection. ACS Nano 16(5):7721–7731

    Article  CAS  Google Scholar 

  • Zhu G, Yang WQ, Zhang T, Jing Q, Chen J, Zhou YS, Bai P, Wang ZL (2014) Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett 14(6):3208–3213

    Article  CAS  Google Scholar 

  • Zhu M, Shi Q, He T, Yi Z, Ma Y, Yang B, Chen T, Lee C (2019) Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 13(2):1940–1952

    CAS  Google Scholar 

  • Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, Chen T, Lee C (2020) Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv 6(19):eaaz8693

    Article  CAS  Google Scholar 

  • Zhu M, Sun Z, Chen T, Lee C (2021) Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nat Commun 12:2692

    Google Scholar 

  • Zhu M, Sun Z, Lee C (2022) Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities. ACS Nano 16(9):14097–14110

    Article  CAS  Google Scholar 

  • Zou Y, Gai Y, Tan P, Jiang D, Qu X, Xue J, Ouyang H, Shi B, Li L, Luo D (2022) Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam Res 2(4):619–628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkuo Lee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wen, F., He, T., Yang, Y., Wang, C., Lee, C. (2023). Triboelectric Nanogenerator as Wearable Sensing Devices. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-28111-2_42

Download citation

Publish with us

Policies and ethics