Skip to main content

Harvesting Water Wave Energy by Triboelectric Nanogenerators

  • Reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 734 Accesses

Abstract

Water wave energy is a promising clean energy source widely distributed with tremendous reserves, yet great technological challenges still hinder its exploitation. As an emerging technology for mechanical energy harvesting, the triboelectric nanogenerator (TENG) shows great potential in effectively harvesting the wave energy, which is discussed in this chapter. Typical TENG unit structures and corresponding networks are introduced in detail. The unit design mainly focuses on rolling ball structure, multilayer structure, spring-oscillator structure, pendulum structure, grating structure, and liquid-solid contact structure, which realize improved output density and response to low-frequency wave agitations. A maximum average power density of 7.3 W m−3 and peak power density of 30.24 W m−3 are achieved in water waves. Networking strategies of coupled networks and self-assembly networks are also presented, showing cooperative effects between units and autonomous capabilities, which allow improved performance and adaptability in ocean environment. To further enhance the performance of the device, the charge pumping strategy is designed to enhance the confined charge density, which first realizes a record of 1.02 mC m−2 in ambient conditions and provides a new paradigm to improve the output of the TENG. The rotary charge pumping extends the strategy from contact-separation mode to sliding and rotary mode, with high average power density of 1.66 kW m−3. The charge shuttling mechanism develops a new mode for confining charges, based on two quasi-symmetrical conduction domains that can double the charge output. The charge supplement method demonstrates an effective and simple approach to obtain stable high voltage. The related power management and applications of the TENGs for wave energy harvesting are also briefly introduced. At last, some perspectives on future development of this research direction are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai P, Zhu G, Lin Z-H, Jing Q, Chen J, Zhang G, Ma J, Wang ZL (2013) Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4):3713–3719

    Article  CAS  Google Scholar 

  • Bai Y, Xu L, He C, Zhu L, Yang X, Jiang T, Nie J, Zhong W, Wang ZL (2019) High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy 66:104117

    Article  CAS  Google Scholar 

  • Bai Y, Xu L, Lin S, Luo J, Qin H, Han K, Wang ZL (2020) Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv Energy Mater 10(21):2000605

    Article  CAS  Google Scholar 

  • Callaway E (2007) Energy: to catch a wave. Nature 450(7167):156–159

    Article  CAS  Google Scholar 

  • Chen J, Yang J, Li Z, Fan X, Zi Y, Jing Q, Guo H, Wen Z, Pradel KC, Niu S, Wang ZL (2015) Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9(3):3324–3331

    Article  CAS  Google Scholar 

  • Cheng G, Lin Z-H, Lin L, Du Z, Wang ZL (2013) Pulsed nanogenerator with huge instantaneous output power density. ACS Nano 7(8):7383–7391

    Article  CAS  Google Scholar 

  • Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. Proc Inst Mech Eng A J Power Energy 223(8):887–902

    Article  Google Scholar 

  • Du W, Han X, Lin L, Chen M, Li X, Pan C, Wang ZL (2014) A three dimensional multi-layered sliding triboelectric nanogenerator. Adv Energy Mater 4(11):1301592

    Article  Google Scholar 

  • Falcao AFD (2010) Wave energy utilization: a review of the technologies. Renew Sust Energ Rev 14(3):899–918

    Article  Google Scholar 

  • Fan FR, Tian ZQ, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334

    Article  CAS  Google Scholar 

  • Isaacs JD, Schmitt WR (1980) Ocean energy: forms and prospects. Science 207(4428):265–273

    Article  CAS  Google Scholar 

  • Li HY, Su L, Kuang SY, Pan CF, Zhu G, Wang ZL (2015) Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv Funct Mater 25(35):5691–5697

    Article  CAS  Google Scholar 

  • Lin ZH, Cheng G, Lin L, Lee S, Wang ZL (2013) Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew Chem Int Ed Engl 52(48):12545–12549

    Article  CAS  Google Scholar 

  • Lin Z, Zhang B, Guo H, Wu Z, Zou H, Yang J, Wang ZL (2019) Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64:103908

    Article  CAS  Google Scholar 

  • Liu G, Guo H, Xu S, Hu C, Wang ZL (2019a) Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv Energy Mater 9(26):1900801

    Article  Google Scholar 

  • Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, Xi Y, Wang X, Guo H, Hu C, Wang ZL (2019b) Integrated charge excitation triboelectric nanogenerator. Nat Commun 10(1):1426

    Article  Google Scholar 

  • Liu W, Xu L, Bu T, Yang H, Liu G, Li W, Pang Y, Hu C, Zhang C, Cheng T (2019c) Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 58:499–507

    Article  CAS  Google Scholar 

  • Liu L, Yang X, Zhao L, Hong H, Cui H, Duan J, Yang Q, Tang Q (2021) Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 15(6):9412–9421

    Article  CAS  Google Scholar 

  • Niu S, Wang ZL (2015) Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–192

    Article  CAS  Google Scholar 

  • Niu S, Wang S, Lin L, Liu Y, Zhou YS, Hu Y, Wang ZL (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6(12):3576

    Article  Google Scholar 

  • Pang Y, Chen S, Chu Y, Wang ZL, Cao C (2019) Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy 66:104131

    Article  CAS  Google Scholar 

  • Qin H, Xu L, Lin S, Zhan F, Dong K, Han K, Wang H, Feng Y, Wang ZL (2022) Underwater energy harvesting and sensing by sweeping out the charges in an electric double layer using an oil droplet. Adv Funct Mater 32(18):2111662

    Article  CAS  Google Scholar 

  • Salter SH (1974) Wave power. Nature 249(5459):720–724

    Article  Google Scholar 

  • Tollefson J (2014) Power from the oceans: blue energy. Nature 508(7496):302–304

    Article  CAS  Google Scholar 

  • Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discuss 176:447–458

    Article  CAS  Google Scholar 

  • Wang ZL (2017a) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82

    Article  Google Scholar 

  • Wang ZL (2017b) Catch wave power in floating nets. Nature 542(7640):159–160

    Article  Google Scholar 

  • Wang ZL (2021) From contact electrification to triboelectric nanogenerators. Rep Prog Phys 84(9):096502

    Article  CAS  Google Scholar 

  • Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou YS, Wang ZL (2014) Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv Mater 26(39):6720–6728

    Article  CAS  Google Scholar 

  • Wang X, Niu S, Yin Y, Yi F, You Z, Wang ZL (2015a) Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv Energy Mater 5(24):1501467

    Article  Google Scholar 

  • Wang ZL, Chen J, Lin L (2015b) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8(8):2250–2282

    Article  CAS  Google Scholar 

  • Wang J, Wu C, Dai Y, Zhao Z, Wang A, Zhang T, Wang ZL (2017a) Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun 8(1):88

    Article  Google Scholar 

  • Wang ZL, Jiang T, Xu L (2017b) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23

    Article  Google Scholar 

  • Wang H, Xu L, Bai Y, Wang ZL (2020) Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat Commun 11(1):4203

    Article  Google Scholar 

  • Wang H, Xu L, Wang Z (2021) Advances of high-performance triboelectric nanogenerators for blue energy harvesting. Nanoenergy Adv 1(1):32–57

    Article  CAS  Google Scholar 

  • Wen X, Yang W, Jing Q, Wang ZL (2014) Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8(7):7405–7412

    Article  CAS  Google Scholar 

  • Wen Z, Guo H, Zi Y, Yeh M-H, Wang X, Deng J, Wang J, Li S, Hu C, Zhu L, Wang ZL (2016) Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7):6526–6534

    Article  CAS  Google Scholar 

  • Wu H, Wang S, Wang Z, Zi Y (2021) Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat Commun 12(1):5470

    Article  CAS  Google Scholar 

  • Xi F, Pang Y, Li W, Jiang T, Zhang L, Guo T, Liu G, Zhang C, Wang ZL (2017) Universal power management strategy for triboelectric nanogenerator. Nano Energy 37:168–176

    Article  CAS  Google Scholar 

  • Xu L, Pang Y, Zhang C, Jiang T, Chen X, Luo J, Tang W, Cao X, Wang ZL (2017) Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 31:351–358

    Article  CAS  Google Scholar 

  • Xu L, Bu TZ, Yang XD, Zhang C, Wang ZL (2018a) Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 49:625–633

    Article  CAS  Google Scholar 

  • Xu L, Jiang T, Lin P, Shao JJ, He C, Zhong W, Chen XY, Wang ZL (2018b) Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12(2):1849–1858

    Article  CAS  Google Scholar 

  • Xu L, Wu H, Yao G, Chen L, Yang X, Chen B, Huang X, Zhong W, Chen X, Yin Z, Wang ZL (2018c) Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12(10):10262–10271

    Article  CAS  Google Scholar 

  • Xu W, Zheng H, Liu Y, Zhou X, Zhang C, Song Y, Deng X, Leung M, Yang Z, Xu RX, Wang ZL, Zeng XC, Wang Z (2020) A droplet-based electricity generator with high instantaneous power density. Nature 578(7795):392–396

    Article  CAS  Google Scholar 

  • Yang Y, Zhang H, Liu R, Wen X, Hou T-C, Wang ZL (2013) Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv Energy Mater 3(12):1563–1568

    Article  CAS  Google Scholar 

  • Yang X, Xu L, Lin P, Zhong W, Bai Y, Luo J, Chen J, Wang ZL (2019) Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60:404–412

    Article  CAS  Google Scholar 

  • Yang Z, Yang Y, Wang H, Liu F, Lu Y, Ji L, Wang ZL, Cheng J (2021) Charge pumping for sliding-mode triboelectric nanogenerator with voltage stabilization and boosted current. Adv Energy Mater 11(28):2101147

    Article  CAS  Google Scholar 

  • Zhang H, Yang Y, Su Y, Chen J, Adams K, Lee S, Hu C, Wang ZL (2014) Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv Funct Mater 24(10):1401–1407

    Article  CAS  Google Scholar 

  • Zhang C, He L, Zhou L, Yang O, Yuan W, Wei X, Liu Y, Lu L, Wang J, Wang ZL (2021) Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5(6):1613–1623

    Article  Google Scholar 

  • Zhao XJ, Kuang SY, Wang ZL, Zhu G (2018) Highly adaptive solid–liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 12(5):4280–4285

    Article  CAS  Google Scholar 

  • Zhou T, Zhang L, Xue F, Tang W, Zhang C, Wang ZL (2016) Multilayered electret films based triboelectric nanogenerator. Nano Res 9(5):1442–1451

    Article  CAS  Google Scholar 

  • Zhu G, Su Y, Bai P, Chen J, Jing Q, Yang W, Wang ZL (2014) Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6):6031–6037

    Article  CAS  Google Scholar 

  • Zi Y, Niu S, Wang J, Wen Z, Tang W, Wang ZL (2015) Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat Commun 6(1):8376

    Article  CAS  Google Scholar 

  • Zi Y, Guo H, Wen Z, Yeh M-H, Hu C, Wang ZL (2016) Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4):4797–4805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, L. (2023). Harvesting Water Wave Energy by Triboelectric Nanogenerators. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-28111-2_31

Download citation

Publish with us

Policies and ethics