Skip to main content

Triboelectric Nanogenerators for Implantable Medical Science

  • Reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators

Abstract

The limited battery life of implantable medical electronic devices makes it difficult to provide long-term and uninterrupted monitoring and treatment for patients. The implantable triboelectric nanogenerators (iTENGs) can collect energy such as heartbeat, breathing, and muscle movement in vivo and transform it into electricity, which solves the problem of limited battery life of implantable medical electronic devices. This chapter introduced the characteristics of iTENGs for implantable medical science, and reviewed the application of iTENGs in implantable medical electronic devices from three aspects: biomechanical energy harvest, physiological signal acquisition, and electrical stimulation therapy. The future development of implantable medical electronic devices based on iTENGs was prospected from the energy harvesting and storage management of implantable medical electronic devices and the long-term biocompatibility of implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Suhaimi EA, Aljafary MA, Alfareed TM, Alshuyeh HA, Alhamid GM, Sonbol B, Almofleh A, Alkulaifi FM, Altwayan RK, Alharbi JN, Binmahfooz NM, Alhasani ES, Tombuloglu H, Rasdan AS, Lardhi AA, Baykal A, Homeida AM (2022) Nanogenerator-based sensors for energy harvesting from cardiac contraction. Front Energy Res 10:900534

    Google Scholar 

  • Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–421

    Google Scholar 

  • Belt Hvd, Neut D, Schenk W, Horn JRv, Mei HCvd, Busscher HJ (2001) Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review. Acta Orthop Scand 72:557–571

    Google Scholar 

  • Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. JBJS 83:1514–1523

    Google Scholar 

  • Chang K-V, Hung C-Y, Chen W-S, Lai M-S, Chien K-L, Han D-S (2013) Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients-a systematic review and meta-analysis. PLoS One 8:e81124

    Google Scholar 

  • Chao SY, Ouyang H, Jiang DJ, Fan YB, Li Z (2021) Triboelectric nanogenerator based on degradable materials. Ecomat 3:e12072

    Google Scholar 

  • Chen J, Zhu G, Yang W, Jing Q, Bai P, Yang Y, Hou TC, Wang ZL (2013) Harmonic‐resonator‐based triboelectric nanogenerator as a sustainable power source and a self‐powered active vibration sensor. Adv Mater 25:6094–6099

    Google Scholar 

  • Cheng B, Ma J, Li G, Bai S, Xu Q, Cui X, Cheng L, Qin Y, Wang ZL (2020) Mechanically asymmetrical triboelectric nanogenerator for self‐powered monitoring of in vivo microscale weak movement. Adv Energy Mater 10:2000827

    Google Scholar 

  • Choi YS, Yin RT, Pfenniger A, Koo J, Avila R, Lee KB, Chen SW, Lee G, Li G, Qiao Y, Murillo-Berlioz A, Kiss A, Han SL, Lee SM, Li CH, Xie ZQ, Chen YY, Burrell A, Geist B, Jeong H, Kim J, Yoon HJ, Banks A, Kang SK, Zhang ZJ, Haney CR, Sahakian AV, Johnson D, Efimova T, Huang YG, Trachiotis GD, Knight BP, Arora RK, Efimov IR, Rogers JA (2021) Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat Biotechnol 39:1228

    Google Scholar 

  • Du S, Zhou NY, Xie G, Chen Y, Suo HN, Xu JP, Tao J, Zhang LB, Zhu JT (2021) Surface-engineered triboelectric nanogenerator patches with drug loading and electrical stimulation capabilities: Toward promoting infected wounds healing. Nano Energy 85:106004

    Google Scholar 

  • Ercan B, Webster TJ (2010) The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 31:3684–3693

    Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Google Scholar 

  • Gong H, Xu ZJ, Yang Y, Xu QC, Li XY, Cheng X, Huang YR, Zhang F, Zhao JZ, Li SY, Liu XY, Huang QL, Guo WX (2020) Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens Bioelectron 169:112567

    Google Scholar 

  • Gordon T (2016a) Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics 13:295–310

    Google Scholar 

  • Gordon T (2016b) Nerve regeneration in the peripheral and central nervous systems. J Physiol 594:3517

    Google Scholar 

  • Grimnes S, Martinsen OG (2011) Bioimpedance and bioelectricity basics. Academic Press, London

    Google Scholar 

  • Guan QB, Dai YH, Yang YQ, Bi XY, Wen Z, Pan Y (2018) Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy 51:333–339

    Google Scholar 

  • Han YJ, Han YF, Zhang XP, Li L, Zhang CW, Liu JH, Lu G, Yu HD, Huang W (2020) Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. Acs Appl Mater Inter 12:16442–16450

    Google Scholar 

  • Harris MP (2021) Bioelectric signaling as a unique regulator of development and regeneration. Development 148:180794

    Google Scholar 

  • Howland RH (2014) Vagus nerve stimulation. Curr Behav Neurosci Rep 1:64–73

    Google Scholar 

  • Hu W, Wei X, Zhu L, Yin D, Wei A, Bi X, Liu T, Zhou G, Qiang Y, Sun X, Wen Z, Pan Y (2019) Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 57:600–607

    Google Scholar 

  • Ibrahim A, Yamomo G, Willing R, Towfighian S (2021) Parametric study of a triboelectric transducer in total knee replacement application. J Intel Mat Syst Str 32:16–28

    Google Scholar 

  • Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, Fujioka K, Maher JW, Swain J, Que FG (2014) Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 312:915–922

    Google Scholar 

  • Jiang T, Zhang LM, Chen XY, Han CB, Tang W, Zhang C, Xu L, Wang ZL (2015) Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 9:12562–12572

    Google Scholar 

  • Jiang W, Li H, Liu Z, Li Z, Tian J, Shi B, Zou Y, Ouyang H, Zhao C, Zhao L, Sun R, Zheng H, Fan Y, Wang ZL, Li Z (2018) Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv Mater 30:e1801895

    Google Scholar 

  • Jiang DJ, Shi BJ, Ouyang H, Fan YB, Wang ZL, Li Z (2020) Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14:6436–6448

    Google Scholar 

  • Khalifeh JM, Zohny Z, MacEwan M, Stephen M, Johnston W, Gamble P, Zeng Y, Yan Y, Ray WZ (2018) Electrical stimulation and bone healing: a review of current technology and clinical applications. IEEE Rev Biomed Eng 11:217–232

    Google Scholar 

  • Khandelwal G, Chandrasekhar A, Raj NPMJ, Kim SJ (2019) Metal-organic framework: A novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv Energy Mater 9:1803581

    Google Scholar 

  • Kim IS, Song JK, Zhang YL, Lee TH, Cho TH, Song YM, Kim SJ, Hwang SJ (2006) Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochim Biophys Acta (BBA) Mol Cell Res 1763:907–916

    Google Scholar 

  • Lee S, Wang H, Shi Q, Dhakar L, Wang J, Thakor NV, Yen S-C, Lee C (2017) Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy 33:1–11

    Google Scholar 

  • Lee S, Wang H, Xian Peh WY, He T, Yen S-C, Thakor NV, Lee C (2019) Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: A triboelectric neurostimulator integrated with flexible neural clip interface. Nano Energy 60:449–456

    Google Scholar 

  • Li Z, Zhu GA, Yang RS, Wang AC, Wang ZL (2010) Muscle-driven in vivo nanogenerator. Adv Mater 22:2534–2537

    Google Scholar 

  • Li Z, Feng HQ, Zheng Q, Li H, Zhao CC, Ouyang H, Noreen S, Yu M, Su F, Liu RP, Li LL, Wang ZL, Li Z (2018a) Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy 54:390–399

    Google Scholar 

  • Li J, Kang L, Long Y, Wei H, Yu YH, Wang YH, Ferreira CA, Yao G, Zhang ZY, Carlos C, German L, Lan XL, Cai WB, Wang XD (2018b) Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. Acs Appl Mater Inter 10:42030–42038

    Google Scholar 

  • Li Z, Feng H, Zheng Q, Li H, Zhao C, Ouyang H, Noreen S, Yu M, Su F, Liu R (2018c) Nano Energy 54:390–399

    Article  CAS  Google Scholar 

  • Li J, Long Y, Yang F, Wang XD (2020a) Respiration-driven triboelectric nanogenerators for biomedical applications. Ecomat 2:e12045

    Google Scholar 

  • Li J, Long Y, Wang XD (2020b) Polymer-based nanogenerator for biomedical applications. Chem Res Chinese U 36:41–54

    Google Scholar 

  • Liang Q, Zhang Q, Yan X, Liao X, Han L, Yi F, Ma M, Zhang Y (2017) Recyclable and green triboelectric nanogenerator. Adv Mater 29:1604961

    Google Scholar 

  • Liu Z, Ma Y, Ouyang H, Shi BJ, Li N, Jiang DJ, Xie F, Qu D, Zou Y, Huang Y, Li H, Zhao CC, Tan PC, Yu M, Fan YB, Zhang H, Wang ZL, Li Z (2019) Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv Funct Mater 29:1807560

    Google Scholar 

  • Liu SM, Li X, Wang YQ, Yang YF, Meng LX, Cheng TH, Wang ZL (2021) Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy 83:105851

    Google Scholar 

  • Ma Y, Zheng Q, Liu Y, Shi BJ, Xue X, Ji WP, Liu Z, Jin YM, Zou Y, An Z, Zhang W, Wang XX, Jiang W, Xu ZY, Wang ZL, Li Z, Zhang H (2016a) Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett 16:6042–6051

    Google Scholar 

  • Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, Liu Z, Jin Y, Zou Y, An Z (2016b) Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett 16:6042–6051

    Google Scholar 

  • Margaronis K, Busolo T, Nair M, Chalklen T, Kar-Narayan S (2021) Tailoring the triboelectric output of poly-L-lactic acid nanotubes through control of polymer crystallinity. J Phys-Mater 4:034010

    Google Scholar 

  • Ouyang H, Liu Z, Li N, Shi B, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q (2019a) Symbiotic cardiac pacemaker. Nat Commun 10:1–10

    Google Scholar 

  • Ouyang H, Liu Z, Li N, Shi BJ, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, Qu XC, Fan YB, Wang ZL, Zhang H, Li Z (2019b) Symbiotic cardiac pacemaker. Nat Commun 10:9851

    Google Scholar 

  • Ouyang H, Li Z, Gu M, Hu Y, Xu L, Jiang D, Cheng S, Zou Y, Deng Y, Shi B, Hua W, Fan Y, Li Z, Wang Z (2021) A bioresorbable dynamic pressure sensor for cardiovascular postoperative care. Adv Mater 33:e2102302

    Google Scholar 

  • Parandeh S, Etemadi N, Kharaziha M, Chen G, Nashalian A, Xiao X, Chen J (2021) Advances in triboelectric nanogenerators for self‐powered regenerative medicine. Adv Funct Mater 31:2105169

    Google Scholar 

  • Park JH, Wu C, Sung S, Kim TW (2019) Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy 57:872–878

    Google Scholar 

  • Ryu H, Park HM, Kim MK, Kim B, Myoung HS, Kim TY, Yoon HJ, Kwak SS, Kim J, Hwang TH, Choi EK, Kim SW (2021) Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat Commun 12:4374

    Google Scholar 

  • Shan Y, Feng H, Li Z (2020) Electrical stimulation for nervous system injury: research progress and prospects. Acta Phys Chim Sin 0:2005038–2005030

    Google Scholar 

  • Shen SP, Xiao X, Xiao X, Chen J (2021) Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun 57:5871–5879

    Google Scholar 

  • Shen S, Xiao X, Xiao X, Chen J (2022) Riboelectric Nanogenerators for Self-Powered Breath Monitoring. Acs Appl Energ Mater 5:3952–3965

    Google Scholar 

  • Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W (2021) Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 10:e2100199

    Google Scholar 

  • Shi G, Rouabhia M, Meng S, Zhang Z (2008) Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J Biomed Mater Res A, Jap Soc Biomater, Aust Soc Biomater Korean Soc Biomater 84:1026–1037

    Google Scholar 

  • Shi BJ, Zheng Q, Jiang W, Yan L, Wang XX, Liu H, Yao Y, Li Z, Wang ZL (2016) A Packaged Self-Powered System with Universal Connectors Based on Hybridized Nanogenerators. Adv Mater 28:846–852

    Google Scholar 

  • Shi B, Liu Z, Zheng Q, Meng J, Ouyang H, Zou Y, Jiang D, Qu X, Yu M, Zhao L (2019) Body-integrated self-powered system for wearable and implantable applications. ACS Nano 13:6017–6024

    Google Scholar 

  • Shi R, Zhang J, Tian J, Zhao C, Li Z, Zhang Y, Li Y, Wu C, Tian W, Li Z (2020) An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. Nano Energy 77:105201

    Google Scholar 

  • Sun Y, Chao S, Ouyang H, Zhang W, Luo W, Nie Q, Wang J, Luo C, Ni G, Zhang L, Yang J, Feng H, Mao G, Li Z (2022) Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci Bull 67:1284–1294

    Google Scholar 

  • Tang Q, Pu XJ, Zeng QX, Yang HM, Li J, Wu Y, Guo HY, Huang ZY, Hu CG (2019) A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy 66:104087

    Google Scholar 

  • Tcho IW, Jeon SB, Park SJ, Kim WG, Jin IK, Han JK, Kim D, Choi YK (2018) Disk-based triboelectric nanogenerator operated by rotational force converted from linear force by a gear system. Nano Energy 50:489–496

    Google Scholar 

  • Thamsborg G, Florescu A, Oturai P, Fallentin E, Tritsaris K, Dissing S (2005) Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study. Osteoarthr Cartil 13:575–581

    Google Scholar 

  • Thrivikraman G, Boda SK, Basu B (2018) Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 150:60–86

    Google Scholar 

  • Tian JJ, Shi R, Liu Z, Ouyang H, Yu M, Zhao CC, Zou Y, Jiang DJ, Zhang JS, Li Z (2019) Self-powered implantable electrical stimulator for osteoblasts' proliferation and differentiation. Nano Energy 59:705–714

    Google Scholar 

  • Tong Y, Feng Z, Kim J, Robertson JL, Jia X, Johnson BN (2020) D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75:104973

    Google Scholar 

  • Trappe H-J, Gummert J (2011) Triboelectric nanogenerator based on degradable materials. Dtsch Arztebl Int 108:372

    Google Scholar 

  • Val-Laillet D, Biraben A, Randuineau G, Malbert C-H (2010) Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55:245–252

    Google Scholar 

  • Wang XF, Yin YJ, Yi F, Dai KR, Niu SM, Han YZ, Zhang Y, You Z (2017a) Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 39:429–436

    Google Scholar 

  • Wang Y, Rouabhia M, Lavertu D, Zhang Z (2017b) Pulsed electrical stimulation modulates fibroblasts' behaviour through the Smad signalling pathway. J Tissue Eng Regen Med 11:1110–1121

    Google Scholar 

  • Wang M, Zhang JH, Tang YJ, Li J, Zhang BS, Liang EJ, Mao YC, Wang XD (2018) Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12:6156–6162

    Google Scholar 

  • Wang H, Wang J, He T, Li Z, Lee C (2019) Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs). Nano Energy 63:3844

    Google Scholar 

  • Xu ZJ, Qiu W, Fan XW, Shi YT, Gong H, Huang JN, Patil A, Li XY, Wang ST, Lin HB, Hou C, Zhao JZ, Guo X, Yang Y, Lin HZ, Huang LF, Liu XY, Guo WX (2021) Stretchable, stable, and degradable Silk fibroin enabled by mesoscopic doping for finger motion triggered color/transmittance adjustment. ACS Nano 15:12429–12437

    Google Scholar 

  • Yang D, Ni YF, Kong XX, Li SY, Chen XY, Zhang LQ, Wang ZL (2021) Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15:14653–14661

    Google Scholar 

  • Yao G, Kang L, Li J, Long Y, Wei H, Ferreira CA, Jeffery JJ, Lin Y, Cai WB, Wang XD (2018a) Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun 9:5349

    Google Scholar 

  • Yao G, Kang L, Li J, Long Y, Wei H, Ferreira CA, Jeffery JJ, Lin Y, Cai W, Wang X (2018b) Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun 9:1–10

    Google Scholar 

  • Zhang XS, Han MD, Wang RX, Meng B, Zhu FY, Sun XM, Hu W, Wang W, Li ZH, Zhang HX (2014) High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4:123–131

    Google Scholar 

  • Zhang YJ, Zhou ZT, Fan Z, Zhang SQ, Zheng FM, Liu KY, Zhang YL, Shi ZF, Chen L, Li XX, Mao Y, Wang F, Sun YL, Tao TH (2018) Self-powered multifunctional transient bioelectronics. Small 14:1802050

    Google Scholar 

  • Zhang CY, Lin XJ, Zhang N, Lu YX, Wu ZM, Liu GL, Nie SX (2019a) Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing. Nano Energy 66:104126

    Google Scholar 

  • Zhang X, Cui X, Wang D, Wang S, Liu Z, Zhao G, Zhang Y, Li Z, Wang ZL, Li L (2019b) Piezoelectric nanotopography induced neuron‐like differentiation of stem cells. Adv Funct Mater 29:1900372

    Google Scholar 

  • Zhao M (2009) Electrical fields in wound healing-An overriding signal that directs cell migration. Sem Cell Dev Biol 20(6):674–682

    Google Scholar 

  • Zhao LM, Zheng Q, Ouyang H, Li H, Yan L, Shi BJ, Li Z (2016) A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28:172–178

    Google Scholar 

  • Zhao C, Feng H, Zhang L, Li Z, Zou Y, Tan P, Ouyang H, Jiang D, Yu M, Wang C, Li H, Xu L, Wei W, Li Z (2019) Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv Funct Mater 29:1808640

    Google Scholar 

  • Zhao ZH, Zhou LL, Li SX, Liu D, Li YH, Gao YK, Liu YB, Dai YJ, Wang J, Wang ZL (2021a) Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat Commun 12:4686

    Google Scholar 

  • Zhao D, Zhuo J, Chen Z, Wu J, Ma R, Zhang X, Zhang Y, Wang X, Wei X, Liu L, Pan C, Wang J, Yang J, Yi F, Yang G (2021b) Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano Energy 90:106580

    Google Scholar 

  • Zhao C, Shi Q, Li H, Cui X, Xi Y, Cao Y, Xiang Z, Li F, Sun J, Liu J, Li T, Wei W, Xiong B, Li Z (2022) Shape designed implanted drug delivery system for in situ hepatocellular carcinoma Therapy. ACS Nano 16:8493–8503

    Google Scholar 

  • Zheng Q, Shi BJ, Fan FR, Wang XX, Yan L, Yuan WW, Wang SH, Liu H, Li Z, Wang ZL (2014) In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator. Adv Mater 26:5851–5856

    Google Scholar 

  • Zheng Q, Zhang H, Shi BJ, Xue X, Liu Z, Jin YM, Ma Y, Zou Y, Wang XX, An Z, Tang W, Zhang W, Yang F, Liu Y, Lang XL, Xu ZY, Li Z, Wang ZL (2016a) In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10:6510–6518

    Google Scholar 

  • Zheng Q, Zou Y, Zhang YL, Liu Z, Shi BJ, Wang XX, Jin YM, Ouyang H, Li Z, Wang ZL (2016b) Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv 2:e1501478

    Google Scholar 

  • Zheng Q, Tang Q, Wang ZL, Li Z (2021) Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol 18:7–21

    Google Scholar 

  • Zhou M, Huang M, Zhong H, Xing C, An Y, Zhu R, Jia Z, Qu H, Zhu S, Liu S (2022) Contact separation triboelectric nanogenerator based neural interfacing for effective sciatic nerve restoration. Adv Funct Mater 32:2200269

    Google Scholar 

  • Zou Y, Bo L, Li Z (2021) Recent progress in human body energy harvesting for smart bioelectronic system. Fundam Res 1:364–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, Z. (2023). Triboelectric Nanogenerators for Implantable Medical Science. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-28111-2_17

Download citation

Publish with us

Policies and ethics