Skip to main content

Duoidally Enriched Freyd Categories

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2023)

Abstract

Freyd categories provide a semantics for first-order effectful programming languages by capturing the two different orders of evaluation for products. We enrich Freyd categories in a duoidal category, which provides a new, third choice of parallel composition. Duoidal categories have two monoidal structures which account for the sequential and parallel compositions. The traditional setting is recovered as a full coreflective subcategory for a judicious choice of duoidal category. We give several worked examples of this uniform framework, including the parameterised state monad, basic separation semantics for resources, and interesting cases of change of enrichment.

J. Sigal—Partly funded by Huawei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamek, J., Rosicky, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/CBO9780511600579

  2. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras. American Mathematical Society, Providence (2010). https://doi.org/10.1090/crmm/029

  3. Atkey, R.: Algebras for parameterised monads. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 3–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2_2

    Chapter  Google Scholar 

  4. Batanin, M., Markl, M.: Centers and homotopy centers in enriched monoidal categories. Adv. Math. 230, 1811–1858 (2012). https://doi.org/10.1016/j.aim.2012.04.011

    Article  MathSciNet  MATH  Google Scholar 

  5. Day, B.: On closed categories of functors. In: Midwest Category Seminar. Lecture Notes in Mathematics, vol. 137, pp. 1–38. Springer, Berlin (1970). https://doi.org/10.1007/BFb0060438

  6. Forcey, S.: Enrichment over iterated monoidal categories. Algebraic Geometric Topology 4, 95–119 (2004). https://doi.org/10.2140/agt.2004.4.95

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujii, S.: A unified framework for notions of algebraic theory. Theory Appl. Categories 34(40), 1246–1316 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Garner, R., López Franco, I.: Commutativity. J. Pure Appl. Algebra 220(5), 1707–1751 (2016). https://doi.org/10.1016/j.jpaa.2015.09.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Grandis, M.: Category Theory and Applications: A Textbook for Beginners, 2nd edn. World Scientific, Singapore (2021). https://doi.org/10.1142/12253

    Book  MATH  Google Scholar 

  10. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor. Comput. Sci. 357(1–3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013

    Article  MathSciNet  MATH  Google Scholar 

  11. Im, G.B., Kelly, G.M.: A universal property of the convolution monoidal structure. J. Pure Appl. Algebra 43, 75–88 (1986). https://doi.org/10.1016/0022-4049(86)90005-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacobs, B., Heunen, C., Hasuo, I.: Categorical semantics for arrows. J. Funct. Program. 19(3–4), 403–438 (2009). https://doi.org/10.1017/S0956796809007308

    Article  MathSciNet  MATH  Google Scholar 

  13. Lack, S.: Composing PROPs. Theory Appl. Categories 13(9), 147–163 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value programming languages. Inf. Comput. 185(2), 182–210 (2003). https://doi.org/10.1016/S0890-5401(03)00088-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991). https://doi.org/10.1016/0890-5401(91)90052-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Morrison, S., Penneys, D.: Monoidal categories enriched in braided monoidal categories. Int. Math. Res. Notes 11, 3527–3579 (2019). https://doi.org/10.1093/imrn/rnx217

    Article  MathSciNet  MATH  Google Scholar 

  17. Plotkin, G., Power, J.: Computational effects and operations: an overview. In: Domains. Electronic Notes in Theoretical Computer Science, vol. 73, pp. 149–163 (2004). https://doi.org/10.1016/j.entcs.2004.08.008

  18. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math. Struct. Comput. Sci. 7(5), 453–468 (1997). https://doi.org/10.1017/S0960129597002375

    Article  MathSciNet  MATH  Google Scholar 

  19. Power, J.: Premonoidal categories as categories with algebraic structure. Theor. Comput. Sci. 278(1–2), 303–321 (2002) https://doi.org/10.1016/S0304-3975(00)00340-6. https://www.sciencedirect.com/science/article/pii/S0304397500003406

  20. Staton, S.: Freyd categories are enriched Lawvere theories. In: Proceedings of the Workshop on Algebra, Coalgebra and Topology. Electronic Notes in Theoretical Computer Science, vol. 303, pp. 197–206 (2014). https://doi.org/10.1016/j.entcs.2014.02.010

Download references

Acknowledgments

We would like to thank Robin Kaarsgaard, Ohad Kammar, and Matthew Di Meglio for their input and encouragement, as well as the reviewers of all versions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Sigal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heunen, C., Sigal, J. (2023). Duoidally Enriched Freyd Categories. In: Glück, R., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2023. Lecture Notes in Computer Science, vol 13896. Springer, Cham. https://doi.org/10.1007/978-3-031-28083-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28083-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28082-5

  • Online ISBN: 978-3-031-28083-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics